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Abstract. In this letter, a new chaotic system is discussed. Some basic dynamical properties, such as 
Lyapunov exponents, Poincaré mapping are studied. Based on Lyapunov stability theory, the new chaotic 
system is controlled by the method of adaptive backstepping. Numerical simulations show effectiveness and 
feasibility of this approach. 

Keywords: new chaotic system, dynamical properties, chaotic control

1. Introduction 
Since in 1963, Lorenz found the first chaotic attractor [1] in a three-dimensioned (3D) autonomous 

system when he studied atmospheric convection. In the past years, chaos has been found in many 
engineering systems, and more and more chaotic systems have been found [2-8]. 

Sensitivity to initial conditions is a fundamental characteristic of a chaotic system, so chaos control is 
crucial in application of chaos. It attracted a great deal of attention from various fields since Huber published 
the first paper on chaos control in 1989. Until now, many different methods have been proposed to achieve 
chaos control, such as OGY method [9], adaptive method [10], nonlinear feedback approach [11] and 
backstepping design [12]. Chaos has been found to be useful or has a great potential to be useful, in many 
disciplines such as information processing, collapse prevention of power systems, high-performance circuits 
and devices, thorough liquid mixing with low power consumption, and biomedical engineering applications 
in the research of human brain and heart. Recently, it has been noticed that purposefully creating chaos can 
be a key issue in many technological applications such as communication, encryption, etc. 

In this paper, we propose a new nonlinear chaotic system, in which have four parameters, and two 
nonlinear terms. Its nonlinear term in the third equation is different from that of Lorenz system, Chen system, 
and Lü system. Some basic properties of the new system are studied. Based on Lyapunov stability theory, 
with the adaptive backstepping techniques, parameter identification and control of the uncertain new chaotic 
system can be achieved simultaneously with only one controller. This method overcomes the singularity 
problem caused by nonlinear terms in new system, and it has a great potential in application.  

2. A new chaotic system 
A new nonlinear chaotic system is proposed in this letter, the autonomy differential equations that 

describe the system are 
2( ), ,x a y x y bx cy xz z y hz= − = + − = −                                                                 (1) 

System (1) has a chaotic attractor shown in Fig. 1, when a = 27.5, b = 3.5, c = 19.3, h = 2.9. 
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Fig. 1: The new attractor. (a) Three-dimensional view; (b) x-y phase plane strange attractor; (c) x-z phase plane 
strange attractor; (d) y-z phase plane strange attractor. 

2.1. Some basic properties 
2.1.1. Symmetry and invariance  
Note that the invariance of the system (1) under the transformation (x, y, z)→(-x, -y, z),i.e. under 

reflection in the z-axis. The symmetry persists for all values of the system parameters. 
2.1.2. Dissipativity and the existence of attractor 
For system (1), one has 

11.1x y zV a c h
x y z
∂ ∂ ∂

∇ = + + = − + − = −
∂ ∂ ∂

 

So system (1) is dissipative, with an exponential contraction rate: dv/dt=e-11.1.. That is a volume element 
V0 is contracted by the flow into a volume element V0e-11.1t in time t. This means that each volume 
containing the system trajectory shrinks to zero as t→∞ at an exponential rate -11.1. In fact, numerical 
simulations have shown that system orbits are ultimately confined into a specific limit set of zero volume, 
and the system asymptotic motion settles onto an attractor. 

2.2. Equilibria and stability Equilibria and stability 
The equilibria of system (1) can be easily found by solving the three equations , which lead 

to , and . It can be easily verified that there are three equilibria: S
0=== zyx

( ) 0,a y x bx cy xz− = + − = 0 2 0y hz− = 0 (0, 0, 
0), S1(8.1314,8.1314,22.8), S2(-8.1314,-8.1314,22.8), in which two equilibria S1 and S2 are symmetrically 
placed with respect to the z-axis. 

For equilibrium S0 (0, 0, 0), system (1) is linearized, the Jacobian matrix is defined as 
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J0=
0

0 2

a a
b z c x

y h

−⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟−⎝ ⎠

＝  
27.5 27.5 0
3.5 19.3 0
0 0 2.

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠9

To gain its eigenvalues, we let 0 0I Jλ − =  

These eigenvalues that corresponding to equilibrium S0 (0, 0, 0) are respectively obtained as follows: 
λ1= -29.4734, λ2= 21.2734, λ3= -2.9. 

Here λ2 is a positive real number, λ1 and λ3 are two negative real number. Therefore, the equilibrium S0 (0, 0, 
0) is a saddle point. So this equilibrium point S0 (0, 0, 0) is unstable. 

For equilibrium point S1, has a Jacobian matrix equal to 

J1=
0

0 2

a a
b z c x

y h

−⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟−⎝ ⎠

=  
27.5 27.5 0
19.3 19.3 8.1314
0 16.2628 2.9

−⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟−⎝ ⎠

To gain its eigenvalues, we let 1 0I Jλ − =  

These corresponding eigenvalues of S1 are 
λ1 = -15.7967, λ2= 2.3483+14.9899i, λ3= 2.3483-14.9899i. 
Results show that λ1 is a negative real number, λ2 and λ3 form a complex conjugate pair and their real 

parts are positive, so equilibrium point S1 is a saddle-focus point, this equilibrium point is unstable. 
For equilibrium point S2 we think over corresponding linearization of state Eqs. (1), it has a Jacobian 

matrix equal to 

J2=
0

0 2

a a
b z c x

y h

−⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟−⎝ ⎠

=  
27.5 27.5 0
19.3 19.3 8.1314
0 16.2628 2.9

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− −⎝ ⎠

We let 2 0I Jλ − =  

These corresponding eigenvalues of S2 are 
λ1= -15.7967, λ2= 2.3483+14.9899i, λ3= 2.3483-14.9899i. 
Here λ1 is a negative real number, λ2 and λ3 become a pair of complex conjugate eigenvalues with 

positive real parts. The equilibrium point S2 is a saddle-focus point, this equilibrium point S2 is also unstable. 

2.3. Lyapunov exponents and Lyapunov dimension 
As is well known, the Lyapunov exponents measure the exponential rates of divergence or convergence 

of nearby trajectories in phase space, according to the detailed numerical as well as theoretical analysis, the 
largest value of positive Lyapunov exponents of this chaotic system is obtained as λL1=2.0713. It is related to 
the expanding nature of different direction in phase space. Another one Lyapunov exponent λL2=0. It is 
related to the critical nature between the expanding and the contracting nature of different direction in phase 
space. 

While negative Lyapunov exponent λL3= -13.1671. It is related to the contracting nature of different 
direction in phase space. 

So, we can obtain the Lyapunov dimension of chaos attractors of system (1), it is described as 

DL=j+ 1 2

1 31

1 2.0712 2 2.1573
13.1671

j
L L

Li
i LLj

λ λλ
λλ =+

+ +
= + = + =

−∑ 3 0  

The largest value of Lyapunov exponents of system (1) is large than zero, and the Lyapunov dimension 
of chaos attractors of system (1) is fractal dimension, therefore, there is really chaos in this system. 

2.4. Waveform, Spectrum and Poincaré mapping 
The waveforms of x(t) in time domain are shown in Fig. 2. The waveform of x(t) is nonperiodic. Its 

spectrum is continuous as shown in Fig. 3. 
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Fig. 2: x(t) waveform                                           Fig. 3: Spectrum of |x| 

Fig. 4 shows the Poincaré mapping. It is clear that some sheets are folded. 
 

 
 
 
 
 
 
 
 

Fig. 4: The Poincaré map of x-y plane. 

3. Adaptive backstepping control 
The controlled system of system (1) is described as follows: 

2( ), ,x a y x y bx cy xz z y hz u= − = + − = − +                                                       (2) 

Where a, b, c, and h are unknown parameters to be identified, here we suppose a >c > 0, u is a controller to 
be designed. 

There are three steps in the backstepping design procedure. At step i, an intermediate control function αi 
should be developed using an appropriate Lyapunov function Vi(t). 

Step 1. Now we consider the first equation in system (2). We have 

1x ay ax ay a axα= − = + −                                                                      (3) 
Where 1( )y y xα= − , with α1 being an artificial control to be defined later. Using α1 as a control to 

stabilize the x1-subsystem defined by Eq. (3), we can choose the following Lyapunov function: 
V1(t) =2-1x2                                                                                     (4) 

Calculating the derivative of V1(t) along system (2), we have 
( ) 2

1( ) 1V t xx axy a xα= = − − 1                                                             (5) 
Since a > 0, we can choose α1= px, where p < 1. We have 

( )1x ay a p x= − −                                                                       (6) 

( ) 2
1( ) 1V t axy a p x= − −                                                                         (7) 

Step 2. In this step, we deal with the singularity problem caused by xz in the second equation of system 
(2). 

Defining , ,  and  as the estimates of a, b, c and h, and introducing the parameters errors â b̂ ĉ ĥ
ˆa a a= − , ˆb b b= − , ˆc c c= − , ˆh h h= − . 
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Then the derivative of y  is expressed as: 

1

2  ( ) (1 ) ( ) (
     ( ) ( ) (1 )

y y y px

)x z bx pcx ap p x ap c y b
pc pc x a a p p x

α

α

= − = −

= − + + + + − − − − −
− − − − −

b x                                            (8) 

Where 2z z α= − , with α2 also being an artificial control to be defined later. 

According to Eqs. (6) and (8), we obtain the 

( )
2

1

( ) (1 ) ( ) (
     ( ) ( ) (1 )

x ay a p x

y x z bx pcx ap p x ap c y b b x
pc pc x a a p p x

α

= − −⎧
⎪

= − + + + + − − − − −⎨
⎪ − − − − −⎩

)                                      (9) 

Using 
2α  as a control to stabilize the (x, y )-subsystem (9). In the following we can consider a Lyapunov 

function V2(t) defined by 

( ) ( ) 1 2 1 2 1 2 1 2
2 1 2 2 2 2V t V t y a b c− − − −= + + + +                                                 (10) 

Its derivative is given by 
2 2 2

2

2
2

( ) (1 ) ( ) ( (1 ) )

           + ( ) ( ) ( (1 ) )

V t a p x ap c y xyz a a p p xy

b b xy c c pxy xy a p p b pcα
∧ ∧ ∧

= − − − − − + − + −

− + − + − + + − + +
                                  (11) 

Choosing 

2
2

ˆ ˆ(1 )a p p b pα
∧

= + − + + c                                                                    (12) 
2(1 )a p p xy m

b xy nb
c pxy rc

⎧ = + − −
⎪⎪ = −⎨
⎪ = −⎪⎩

a
                                                                       (13) 

Where controlling parameters m > 0, n > 0 and r > 0. Then Eq. (11) can be rewritten as 
2 2 2 2

2 ( ) (1 ) ( )V t a p x ap c y xyz ma nb rc= − − − − − − − − 2                                            (14) 

We can choose an appropriate p such that ap-c > 0. Since a > c > 0, it is sufficient to choose 1c p
a
< < . 

We will cancel the third term in the next step. By using Eq. (11), the Eq. (8) can be rewritten in the form 
2(1 ) ( )y xz a p p x bx pcx ax ap c y= − − + − − − − − −                                                 (15) 

Step 3. The derivative of z can be expressed as 

( )2
2 2 2 2( / ) ( / )z z y hz a a b b c c uα α α α= − = − − ∂ ∂ − ∂ ∂ − ∂ ∂ +                                       (16) 

Then we can get the following system by Eqs. (6), (15) and (16) 

( )
2

2
2 2 2

1

(1 ) ( )

( / ) ( / ) ( / )

x ay a p x

y xz a p p x bx pcx ax ap c y

z y hz a a b b c c uα α α

⎧ = − −
⎪⎪ = − − + − − − − − −⎨
⎪

= − − ∂ ∂ − ∂ ∂ − ∂ ∂ +⎪⎩

                                           (17) 

In the following we will choose an appropriate input u to stabilize the system (17). Considering the 
following Lyapunov function 

1 2 1 2
3 2( ) ( ) 2 2V t V t z h− −= + +                                                                          (18) 

Then we can obtain the derivative of V3(t) 

3 2

2 2 2 2 2

2 2 2

( ) ( )

       (1 ) ( ) ( ) (
ˆ          ( / ) ( / ) ( / ) )

V t V t zz hh

a p x ap c y h h zz ma mb rc z u y

hz xy a a b b c cα α α

= + +

= − − − − + + − − − + +

− − − ∂ ∂ − ∂ ∂ − ∂ ∂

2                                 (19) 

We choose the following updated law 
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h zz kh= − −                                                                      (20) 
Where k > 0. 

Letting 

( ) ( ) ( )2
2 2 2

ˆ /u qz xy y hz a a b b cα α α= − + − + + ∂ ∂ + ∂ ∂ + ∂ ∂ c                                           (21) 

Where q > 0. 
According to Eqs. (12) and (13), the Eq(21) can be rewritten as: 

2 2
2

2

( )( ) ( 2 (1 )

     (1 )

u y qz h h z xy p p p

ma p p nb prc

α= − − + + + + + + + −

− + − − −

2 2 )                                               (22) 

So we have 

( ) 2 2 2 2 2 2
3( ) 1 ( )V t a p x ap c y qz ma nb rc kh= − − − − − − − − − 2                                              (23) 

i.e. is negative definite. 3 ( )V t

According to Eqs. (12),(13) and (21), Eq. (17) can be rewritten as 
2( ) (1 )( ) ( ) ( )z xy h q z p p a a h b b h p c c h= + − + + − + + + + +                                          (24) 

We can get the following (x, y , z , a ,b , c , h )-system defined by Eqs. (6), (13), (15), (20) and (24): 

2

2

2

2 2

(1 )
(1 ) ( )

( ) (1 )( ) ( ) ( )
(1 )

(( )(1 ) ( ))

x ay a p x
y xz a p p x bx pcx ax ap c y
z xy h q z p p a a h b b h p c c h
a p p xy ma

b xy nb
c pxy rc

h z z a a p p b b p c c kh

⎧ = − −
⎪
⎪ = − − + − − − − − −
⎪

= + − + + − + + + + +⎪
⎪ = + − −⎨
⎪

= −⎪
⎪ = −⎪
⎪ = − − + + − + + + + −⎩

                           (25) 

For system (25), according to Eqs. (4), (9) and (18), the Lyapunov function 
1 2 1 2 1 2 1 2 1 2 1 2 1 2

3 2 2 2 2 2 2 2V V x y z a b c h− − − − − − −= = + + + + + +  

Since  is a positive function and  is negative definite, it follows that the system (25) is globally 
asymptotically stabilized at the equilibrium (0, 0, 0, 0, 0, 0, 0). 

3V 3V

In view of x, 1( )y y xα= −  and α1 = px, we know that the states x and y go to zero asymptotically. From 

2z z α= −  and Eq. (12), we have z→a (1+p-p2) + b + pc, as t→∞, i.e. z is bounded. At the same time, from 
Eq. (21), we can conclude that the control u is also bounded. 

4. Numerical simulation 
To verify the effectiveness of the above methods, computer simulations were carried out for the 

controlled new system. We select the initial conditions (x0, y0, z0)=(20,20,20),( , , , )=(10,10,10,10), 
(m ,n ,r ,k)=(10,10,10,100), p=0.8, and q=10. 

0â 0̂b 0ĉ 0̂h

Figure 5 shows that states x(t) and y(t) of the controlled system (2) are asymptotically regulated to x= 0 
and y = 0, and the state z remain bounded. 

Figure 6 and Figure 7 show that the parameter estimates a ,b , c , h and the control u are all bounded. 
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Fig. 5: x(-),y(-.) and z(--) of the controlled system (1)    Fig. 6: estimated parameters a (-), b (-.), c (···), h (--) 

 
 
 
 
 
 
 
 

 
Fig. 7: control action u 

5. Conclusion and discussion 
A new nonlinear chaotic system is introduced and discussed in this paper. Some basic dynamical 

properties, such as Lyapunov exponents, Poincaré mapping, fractal dimension, continuous spectrum and 
chaotic behaviors of this new attractor are studied. The found of the new nonlinear chaotic system is an 
innovation in theory. With the adaptive backstepping techniques, control of the uncertain new chaotic system 
and parameter identification can be achieved simultaneously with only one controller. The numerical 
experiments show the feasibility and effectiveness of the method. 

The new attractor and its forming mechanism need further study and exploration. A great deal of 
achievements will be obtained in the near further. 
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