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Abstract. In this paper, we present a recursive method for solving nonlinear Volterra integral equations. 
The proposed method obtains Taylor expansion of the exact solution of Volterra integral equation by using 
simple computations. Comparison with other methods proves that the proposed method is very effective and 
convenient.  

Keywords: Nonlinear Volterra integral equation of second kind, Numerical method, Taylor expansion.  

1. Introduction 
 Several numerical approaches for approximating the solution of linear or nonlinear Volterra integral 

equations are known. Tricomi [5], introduced the classical method of successive approximations for 
nonlinear Volterra integral equations.Brunner [1] applied a collocation-type method to nonlinear Volterra 
equations and integro-differential equations and discussed its connection with the iterated collocation method. 
For Volterra-Hammerstien equations, the asymptotic error expansion of a collocation method was introduced 
[2]. In general, most of numerical methods transform the integral equation to a linear or nonlinear system of 
algebraic equations which can be solved by direct or iterative methods. Yousefi and Razzaghi [6], and also 
Maleknejad et al. [3] used Legendre wavelets to numerical solution of linear and nonlinear Volterra integral 
equations. Recently,Chebyshev polynomials are applied for solving of nonlinear Volterra integral equations 
of the second kind of the form [4]:  

   (1) [ ]( ) = ( ) ( , ) ( ) .
s p

a
y s g s K s t y t dt+ ∫

 
In equation (1), the functions  and ( )g s ( , )K s t  are known, and  is the unknown function to be 
determined, also  is a positive integer number. 

( )y s
1p ≥

For , Eq. (1) is a nonlinear Hammertein-type integral equation. = 2p
Without loss generality, we assume that in Eq.(1), =0a , because in the other wise with substituting =s z a−  in 

Eq.(1) and then doing change variable , we have the following integral equation,  =t x a−

   [ ]
0

( ) = ( ) ( , ) ( )
z py z a g z a K z a x a y x a dx− − + − − −∫ .

If we set =0s  in Eq.(1) then we have , as the initial condition. (0) = (0)y g
Hence, the solution of Eq.(1) can be assume that,  

  0 1=y e e s,+  (2) 

 where,  is a unknown parameter and,  1e

   (3) 0 = (0).e g
Substitute Eq.(2) into Eq.(1) and neglect higher order terms, we have linear equation of  in the form,  1e
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   (4) 1 = ,ae b
 where,  and  are known constants, solve Eq.(4), the coefficients of  in Eq.(2) can be determined. a b s
Repeating above procedure for higher order terms, we can get e  arbitrary order power series of the solution 
for Eq.(1). 

2. The Method 
 Suppose the solution of Eq.(1) with  as the initial condition to be as follows,  0 = (0) = (0)e y g

  0 1( ) = ,y x e e s+  (5) 

 where,  is a unknown parameter. 1e
If we substitute Eq.(5) into Eq.(1) linear algebraic equation:  

  1 ( ) =0,ae b Q s− +  (6) 

 where, a  and b  are known constant values and  is a polynomial with the order greater than zero. ( )Q s

By neglecting  in (6) and solving the system of , the unknown parameter e  and therefore the                      
coefficient of  in Eq.(5) obtains. 

( )Q s 1 =ae b
s

In the next step, we assume that the solution of Eq.(1) to be,  

   (7) 2
0 1 2( ) = ,y s e e s e s+ +

 here,  and  both are known and  is unknown parameter. 0e 1e 2e
By substituting Eq.(7) into Eq.(1), we have following system,  

   (8) ( ) 2
2 ( ) =0.ae b s Q s− +

By neglecting and solving the system of , the unknown parameter  and therefore the coefficient of  
in Eq.(7) obtains. 

2 =ae b 2e 2s

By repeating the above procedure for  iteration, a power series of the following form derives,  m
   (9) 2

0 1 2( ) = .m
my s e e s e s e s+ + + +"

Equation (9) is an approximation for the exact solution  of the integral equation (1).   ( )y s
Theorem 2.1. 1 Let  be the exact solution of the following Volterra integral equation  = ( )y f s

   (10) [ ]( ) = ( ) ( , ) ( ) .
s p

a
y s g s K s t y t dt+ ∫

  Then, the proposed method obtains the Taylor expansion of .   ( )f s
 Proof. Without loss of generality, we suppose that =0a . As it was showed, in the presented method, we assume 

that the approximate solution to Eq.(10) be as follows,  

   (11) i 2
0 1 2( ) = ,f s e e s e s+ + +"

 Hence, it is sufficient that we only prove,  

  
( ) (0)=  ,         =1,2,3,  .

!

l

l
fe l

l
…  (12) 

 Note that for , we always have  =0l
  0(0) = (0) = .f g e  (13) 

 For , if we set  and then derivative from Eq.(10), we obtain  =1l = ( )y f s

  [ ]( ) = ( ) ( , ) ( ) p' 'f s g s K s s f s+  (14) 

 setting =0s  in (14), then we get  

  [ ](0) = (0) (0,0) (0) .p' 'f g K f+  (15) 

 In other hand, from (11) and (13), we have  
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  i
0 1( ) =f s e e s+  (16) 

 by substituting (16) into (14) and setting =0s , we get  

   (17) 1 0= (0) (0,0)( ) = (0) (0,0)( (0))' p 'e g K e g K f+ + p

.
 therefore, with comparison (15) and (17), we conclude that,  

   (18) 1 = (0)'e f
 For , similar to the last step, this time we derivative from (14), we have  = 2l

  [ ] [ ] 1( ) = ( ) ( , ) ( ) ( , ) ( ) ( )pf s g s K s s f s pK s s f s f s −′′ ′′ ′ ′+ + p
 (19) 

 again, we set =0s  in (19) and we get  

  [ ] [ ] 1(0) = (0) (0,0) (0) (0,0) (0) (0)pf g K f pK f f −′′ ′′ ′ ′+ + p
 (20) 

 According to (11),(13) and (18), we suppose that  

  2
2( ) = (0) (0) ,f s f f s e s′+ +�  (21) 

 by substituting (21) into (19), and setting =0s , we have  

  [ ] [ ] 1
22 = (0) (0,0) (0) (0,0) (0) (0) .pe g K f pK f f p−′′ ′ ′+ +  (22) 

 So, with comparison (20) and (22), we conclude that  

 22 = (0)e f ′′ ,       or        2
(0)= .

2!
fe
′′

  

By continuing the above procedure, we can easily prove (12) for .   = 3,4,l …
  Corollary 2.2. 2 If the exact solution to Eq.(10) be a polynomial, then the proposed method will  obtain the real 

solution.   

3. Applications 
  Example 3.1. 3 The test problem, consider the following nonlinear integral equation  

   (23) 2

0
( ) = ( ) ( )[ ( )] ,

s
y s g s s t y t dt+ +∫

where, 
2

2 1( ) =
4 4 4

s
s s e sg s e se− + + −  and ( ) = sy s e  is the exact solution.   

If we set =0s  in Eq.(23), we get  as the initial condition to Eq.(23). (0) =1y
Here, we need obtain the Taylor expansion of  and substitute it in Eq.(23). ( )g s
Now, we apply the proposed method for solving Eq.(23). 
Let the solution of Eq.(23) to be,  

  1( ) = (0)     ( ) =1y s y e s y s e s1+ ⇒ +  (24) 
Substitute (24) into Eq.(23), we have,  

  ( )( )
2

22
1 10

11 = 1
4 4 4

s ss s e se s e se s t e s dt+ − + + − + + +∫  

After simplifying, we get,  

   (25) 2( 1) ( ) =e s Q s− + 0

 where 2 7 6 5 2 4 3
1 1

83 35 71 7 9 5 3 1( ) = .
1008 144 120 12 8 3 2 2

Q s s s s e s e s s⎛ ⎞ ⎛ ⎞+ + − + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2   

By neglecting  in (25) and solving equation 2( )Q s 1=0e−  , we obtain  , hence  =1e
  ( ) =1 ,y s s+  (26) 
 is the first approximation for the exact solution to Eq.(23). 
Now, fom (26), the solution of Eq.(23) can be supposed as:  

JIC email for subscription: publishing@WAU.org.uk 



Ali Tahmasbi, et al: Numerical Solution of Nonlinear Volterra Integral Equations of the Second Kind by Power Series 
 
60 

   (27) 2
2( ) =1y s s e s+ +

Substituting (27) into Eq.(23), gives,  

  2 3
2

1( ) ( ) =
2

e s Q s− + 0,  (28) 

 whre,  

  3 7 2 6 5 4
2 2

83 11 35 71 9 13 7 1( ) = .
1008 30 144 120 10 24 6 6

Q s s e s e s e s s⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − + − − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

3
2  

By neglecting  in (28), we have 3( )Q s 2
1= .
2

e  

Putting 
1=
2

e  in (27), we get  

  21( ) =1
2

y s s s+ +  (29) 

From (29) the solution of Eq.(23) can be supposed as  

  2
3

1( ) =1
2

y s s s e s+ + + 3  (30) 

Substituting (30) into Eq.(23), we obtain  

  3 4
3

1( ) ( ) =
24

e s Q s− + 0,  (31) 

 where,  

  4 2 8 7 6 5
3 3 3 3

15 13 83 109 11 17 9 1( ) = .
56 42 1008 720 15 120 10 24

Q s e s e s e s e s s⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − − − + − − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

4  

By ignoring  in (31), we obtain 4( )Q s 1=
24

e  . Therefore  

  21 1( ) =1 .
2 24

y s s s s+ + + 3  (32) 

Proceeding in this way, we get,  

2 3 4 5 6 71 1 1 1 1 1( ) =1 ,  .
2 6 24 120 720 5040

y s s s s s s s s+ + + + + + + +"           (33) 

 Example 3.2. 4 As the second example consider the following linear Volterra integral equation with 
logarithmic singularity,  

2

0
( ) = ( ) ln | 1| ( ) ,      1 1

s
y s g s s t y t dt t s+ − + − ≤ ≤∫ ≤                   (34) 

where, ( ) ( ) (23 1 3 3( ) = ln 1 2ln 1 ln 1
4 2 2 2

g s s s s s s s⎛ ⎞ ⎛ ⎞− + + − + + + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

)  and the exact solution is    

( ) = 1Y s s + . 

 By applying the proposed method, we obtain,  

  2 3 4 5 61 1 1 5 7 21( ) =1
2 8 16 128 256 1024

y s s s s s s s+ − + − + − +"  

Table 1 shows the absolute errors for . = 6m

JIC email for contribution: editor@jic.org.uk 



Journal of Information and Computing Science, 3 (2008) 1, pp 57-61 61

Table 1. Absolute errors for Example 3.2. 

is  ( )iy s  ( )iY s  Error  
  -1    0.22558593750    0 2.2558593750  110−×

-0.75    0.50582194328       0.50000000000    5.8219432831  310−×
-0.50 0.70732116699       0.70710678119   2.1438580564  410−×
-0.25 0.86602663994    0.86602540378   1.2361539159   610−×

0 1.0000000000 1.0000000000 0 
0.25 1.1180331707   1.1180339887    8.1804982166   710−×
0.50    1.2246551514    1.2247448714    8.9720024401   510−×
0.75    1.3215339184   1.3228756555   1.3417371515  310−×

1   1.4052734375   1.4142135624    8.9401248731   310−×
   

  Example 3.3. 5 For the following nonlinear second kind Volterra integral equation  

  ( ) [ ]21 2 2

1

1 1( ) = 3 1 13 10 12 9 ( )
3 3

ss s s ty s s e e s s e y t dt+ −

−

⎛ ⎞− − − + + + −⎜ ⎟
⎝ ⎠∫  

with exact solution , the method gives the exact solution too, because it is a polynomial. ( ) = 3 1y s s −
   

  Example 3.4. 6 We consider the nonlinear Volterra integral equation  

   (35) 1
1 20

( ) = ( ) ( , ) ( ( )) ,   [0,1]   , ( ), ( ) [0,1].
x

u x f x F x N u d x u x f x Wξ ξ ξ+ ∈∫ ∈ ∈
 the existence and uniqueness of solution for Eq.(35) have to be established in [7,8]. 

2
1   ( ( )) =1 ( ),N u x u x+  

   ( , ) = ( ),F x sin xξ ξ−  
3 1 7        ( ) = 2

2 6 3
f x cos x cosx−

+ +  

 then  is the exact solution. ( ) =u x cosx
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