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Abstract. In this study, we use a recursive method based upon power series to solve nonlinear Volterra 
integral equations system of the second kind. This method gives an approximate solution as the Taylor 
expansion for the solution of the system via some simple computations. Numerical examples illustrate the 
pertinent features of the method.  
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1.  Introduction  
In recent years, many different methods have been used to approximate the solution of linear or 

nonlinear Volterra integral equations system [1, 2, 3, 4, 5, and 7]. Tricomi, in his book [6], introduced the 
classical method of successive approximations for nonlinear Volterra integral equations. In [2], Brunner 
applied a collocation-type method to nonlinear Volterra equations and integro-differential equations and 
discussed its connection with the iterated collocation method. For Volterra-Hammerstein equations, the 
asymptotic error expansion of a collocation method was introduced in [3]. In general, most of numerical 
methods transform the integral equation to a linear or nonlinear system of algebraic equations which can be 
solved by direct or iterative methods. Yousefi and Razzaghi in [7], and also Maleknejad et al in [4] used 
Legendre wavelets to numerical solution of linear and nonlinear Volterra integral equations. Recently, In [5], 
Chebyshev polynomials are applied for solving of nonlinear Volterra integral equations of the second kind. 

In the present article, we consider the second kind Volterra integral equations system of the form:  
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where, 0 , 1, 0, , 1, 2,...,ijt s i j nλ≤ ≤ ≠ =  is a real constant, and , , . 1, 2,...,i jP i j n=  is a nonnegative 

integer. Moreover, in Eq.(1) the function  and the kernel  are given and assumed to be 
sufficiently differentiable with respect to all their arguments on the interval 0 , , for all 

 . Also,  is the solution to be determined. 

( )ig s , ( , )i jk s t
1

                                                          

t s≤ ≤
, 1, 2,...,i j n= 1 2( ) [ ( ), ( ),..., ( )]T

nY s y s y s y s=

To avoid of complesity, we simplify Eq.(1) by using the following notations, 
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So, we can rewrite Eq.(1) as 

0
( ) ( ) ( , )[ ( )] .

s PY s G s K s t Y t dt= +Λ∫                                                      (2) 

If we set  in Eq.(2) then we have 0s = (0) (0)Y G= , as the initial condition. Hence, the solution of 
Eq.(2) can be assume that, 

0 1 ,Y E E s= +                                                                        (3) 

where, 1 11 12 1[ , ,..., ]T
nE e e e=  is an unknown vector and,  

0 1 2(0) [ (0), (0),..., (0)] .T
nE G g g g= =                                                    (4) 

Substitute Eq.(3) into Eq.(2) and neglect higher order terms, we have linear equation of  in the form, 1E

1 ,AE b=                                                                            (5) 

where,  is a known constant matrix and ,[ ]i j n nA a ×= 1nb ×  is a known constant vector. By solving Eq.(5), 
the coefficient of  in Eq.(3) can be determined. 

Repeating above procedure for higher order terms, we can get an arbitrary order power series of the 
solution for Eq.(2). 

2. Statement of the Scheme 
Suppose the solution of Eq.(2) with 0 (0) (0)E Y G= = as the initial condition to be as follows, 

0 1( ) ,Y x E E s= +                                                                      (6) 

where,  is an unknown vector. 1E
If we substitute Eq.(6) into Eq.(2) we obtain the following linear algebraic equation,  

1 ( ) 0,AE b Q s− + =                                                                   (7) 

where, A  and  are known constant value and  is a vector function 
which  is a polynomial with the order greater than one. 

b 1 2( ) [ ( ), ( ),..., ( )]T
nQ s q s q s q s=

( ), 1, 2,...,iq s i n=

Neglecting  in Eq.(7) and solving the system of ( )Q s 1AE b= , the unknown vector and therefore the 
coefficient of   in Eq.(6) is obtained. 

1E
s

In the next step, we assume that the solution of Eq.(2) to be,  
2

0 1 2( ) ,Y s E E s E s= + +                                                                (8) 

here, and both are known vectors and  is an unknown vector. By substituting Eq.(8) into Eq.(2), 
we have following system,  

0E 1E 2E

( ) 2
2 ( ) 0.AE b s Q s− + =                                                               (9) 

Again, by neglecting and solving the system of 2AE b= , the unknown vector  and therefore the 

coefficient of  in Eq.(8) is obtained. 
2E

2s
By repeating the above procedure for  m  iterations, a Power series of the following form is derived,  

JIC email for contribution: editor@jic.org.uk 



Journal of Information and Computing Science, 3 (2008) 2, pp 97-103 99
 
 

                                                    (10) 2
0 1 2( ) .m

mY s E E s E s E s= + + + +

Eq.(10) is an approximation for the exact solution  of the integral equation (2).   ( )Y s
Theorem 1. Suppose all of components of functions  and ( )G s ( , )K s t  in (2) be analytic functions with 

respect to all their arguments. Also, let  be the exact solution of the following 
Volterra integral equation  

1( ) [ ( ),..., ( )]T
nF s f s f s=

0
( ) ( ) ( , )[ ( )] .

s PF s G s K s t F t dt= +Λ∫                                                   (11) 

Futhermore, suppose all elements of  be infinitely differentiable functions in a neighborhood of 
. Then, the method obtains the Taylor expansion of .   

( )F s
0s = ( )F s
Proof. As it was showed, in the presented method, we assume that the approximate solution to Eq.(11) 

be as follows, 
2

0 1 2( ) .F s E E s E s= + + +                                                          (12) 

Hence, it is sufficient that we prove,  

( )( )1 0 , 1, 2,3,...,
!

m
mE F m

m
= =                                              (13) 

where, and 1 2[ , ,..., ]T
m m m mnE e e e= ( )( ) 1 2

0

( )( ) ( )0 , ,...,
T

m n

s

df sdf s df sF
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⎡ ⎤= ⎢ ⎥⎣ ⎦
. 

Note that for , we always have  0m =

0 01 02 0(0) (0) [ , ,..., ] .T
nF G E e e e= = =                                                   (14) 

For , if we set 1m = ( )i iY F s= and then derivative from Eq.(11), we obtain  

1
( ) ( ) ( , )[ ( )] , 1, 2,..., .ijn P

i i ij ij jj
f s g s k s s f s i nλ

=
′ ′= + =∑                                   (15) 

Setting   in Eq.(15), then we get  0s =

1
(0) (0) (0,0)[ (0)] , 1, 2,..., .ijn P

i i ij ij jj
f g k f iλ

=
′ ′= + =∑ n                                   (16) 

In other hand, from Eq.(12) and Eq.(14), we can derive  

0 1( ) , 1,2,..., .i i if s e e s i n= + + =                                            (17) 

So, by substituting Eq.(17) into Eq.(15) and setting 0s = , for any 1, 2,...,i n= , we get 

1 01 1
(0) (0,0)( ) (0) (0,0)[ (0)]ij ijn nP P

i i ij ij j i ij ij jj j
e g k e g k fλ λ

= =
′ ′= + = +∑ ∑                      (18) 

therefore, with comparison Eq.(16) and Eq.(18), we conclude that,  

1 (0), 1, 2,..., .i ie f i n′= =                                                       (19) 

For , similar to the last step, this time we derivative from (15), we have  2m =

1

1

( )
( ) ( ) ( , )[ ( )] ( , ) [ ( )]ij ijn P Pj

i i ij ij j ij ij jj

df sdf s g s k s s f s P k s s f s
ds ds

λ −

=

⎛ ⎞
′′ ′′= + +⎜ ⎟

⎝ ⎠
∑                   (20) 

again, we set   in Eq.(20) and we get  0s =

1

1

(0)
(0) (0) (0,0)[ (0)] (0,0) [ (0)] .ij ijn P Pj

i i ij ij j ij ij jj

dfdf g k f P k f
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λ −

=

⎛ ⎞
′′ ′′= + +⎜ ⎟

⎝ ⎠
∑                 (21) 

According to Eq.(12), Eq.(14) and Eq.(19), we can suppose that 
2

2( ) (0) (0) , 1,2,..., ,i i i if s f f e s i n′= + + + =                                       (22) 
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by substituting Eq.(22) into Eq.(20), and setting 0s = , we have  

1
2 1

(0)
2 (0) (0,0)[ (0)] (0,0) [ (0)] .ij ijn P Pj

i i ij ij j ij ij jj

dfde g k f P k f
ds ds

λ −

=

⎛ ⎞
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⎝ ⎠
∑                  (23) 

So, with comparison Eq.(21) and Eq.(23), we conclude that  

22 (i ie f ′′= 0)  ,   or  2
1 (0), 1, 2,..., .
2!i ie f i′′= = n  

By continuing the above procedure, we can easily prove Eq.(13) for 3, 4,...m = .   

 
Corollary 2. If the exact solution to Eq.(11) be a polynomial, then the method will obtain it.   

3. Numerical Results 
In the first example, we try to illustrate the proposed method, analytically.   
Example 1. The test problem, consider the following nonlinear integral equation 

2
1 1 11 1 120 0 2

2
2 2 21 1 22 20 0
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∫ ∫
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 lso,  is the exact solution.   
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= ⎜⎜ ⎟ ⎜ +⎝ ⎠ ⎝ ⎠
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If we set  in Eq.(24), we get  as the initial condition to Eq.(24). 0s = 1

2

(0) 1
(0) 0

y
y

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

Now, we apply the proposed method for solving Eq.(24). Let the solution of Eq.(24) to be, 

1 1 11 1 1

2 2 12 2

( ) (0) ( ) 1

( ) (0) ( ) 0

y s y e s y s e s

y s y e s y s e s

= + = +
⇒

= + = +
                                         (25)  

Substitute Eq.(25) into Eq.(24), we have,  

( )

( ) ( )

23 4 6 9
11 11 11 12 120 0

22 4 5 7 9 11
12 21 11 22 120 0

7 7 4 91 1 ( , ) 1 ( , )
2 12 15 8

1 27 1 84 ( , ) 1 ( , )
2 20 6 5

s s

s s

e s s s s s k s t e t dt k s t e tdt

e s s s s s s s k s t e s dt k s t e t dt

+ = − − − − + + +

= − + + − − − + + +

∫ ∫

∫ ∫
 

 After simplifying, we get,  
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e s q s
e s q s

0
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− + =
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                                                              (26) 

where, 

2 3 4 2 5 6
1 12 11 11

2 2 3 4 2 5 7 9 11
2 11 11

5 2 7 1 4 9( ) ( 3 ) ( ) ,
6 3 12 4 15 8

5 1 27 1( ) 4 ( ) .
6 4 20 6

q s e s e s e s s s

q s s e s s e s s s s

= − + + − + − −

= + + + + − − −

9

8
5

 

Neglecting  and  in Eq.(26), we obtain 2
1( )q s 2

2 ( )q s 11 0e =  and 12 0e =  , hence 

1

2

( ) 1
( ) 0

y s
y s

=
=

                                                                        (27) 

is the first approximation for the exact solution to Eq.(24). 
Now, from Eq.(27), the solution of Eq.(24) can be supposed as: 

2
1 2

2
2 22

( ) 1 ,

( ) .

y s e s

y s e s

= +

=
1

0,

,

                                                                   (28) 

Substituting Eq.(28) into Eq.(24), gives, 
2 3

21 1
2 3

22 2

( 0) ( )

( 1) ( ) 0

e s q s

e s q s

− + =

− + =
                                                             (29) 

where,  

3 3 4 5 6 2 7
1 22 21 21

3 4 5 2 7 9 11
2 21 22

7 7 1 4 1 9( ) 3 ( ) ,
12 12 2 15 6 8

7 27 1 1 8( ) ( 4) ( ) .
12 20 6 6 5

q s s e s e s s e s

q s e s s e s s s

= − + − + − + −

= + + + − − −

9s
 

By neglecting  and  in Eq.(29), we have 3
1( )q s 3

2 ( )q s 21 0e =  and 22 1e = . Therefore 

1
2

2

( ) 1,

( ) .

y s

y s s

=

=
                                                                       (30) 

From Eq.(30) the solution of Eq.(24) can be supposed as 
3

1 31

2
2 3

( ) 1 ,

( ) .

y s e s

y s s e s

= +

= + 3
2

,

0,

                                                                (31) 

Substituting Eq.(31) into Eq.(24), we obtain 
3 4

31 1

3 4
32 2

( 3) ( ) 0

( 0) ( )

e s q s

e s q s

+ + =

− + =
                                                            (32) 

where, 

4 5 6 2 9
1 32 31 31

4 4 5 8 2 9
2 31 32 32

9 2 4 1 9( ) ( ) ( ) ,
20 5 15 8 8

9 27 2 1 8( ) 4 ( ) ( 1) .
20 20 7 8 5

q s e s e s e s

q s s e s e s e s s

= − − + −

= + + + + − − 11

 

By ignoring  and  in Eq.(32), we obtain 4
1( )q s 4

2 ( )q s 31 3e = −  and 32 0e = . Therefore 
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4

3
1

2
2

( ) 1 3 ,

( ) .

y s s

y s s

= −

=
                                                                  (33) 

Proceeding in this way, we get,  
3

1
2

2

( ) 1 3 ,

( ) 4 .

y s s

y s s s

= −

= +
                                                                  (34) 

Indeed, according to Corollary 2, since the solutions are polynomials, the method gives them exactly. 
Example 2. Consider the following nonlinear Volterra integral equation with logarithmic singularity, 

2 2
1 1 1 20 0

4 2 3
2 2 1 20 0

( ) ( ) ln 1 ( ) ( ) ( ) ,

( ) ( ) 2 ( ) ( ) ( ) ,

s s

s s

y s g s s t y t dt s t y t dt

y s g s s t y t dt s t y t dt

= + − + + +

= + − + + −

∫ ∫
∫ ∫

                                  (35) 

where, 0 1 , and  t s≤ ≤ ≤

2 2 2
1

3
2 2 3 22

2

3 1 7 3( ) 1 ln( 1) 2 ln( 1) ln( 1) ( 1) 1,
2 2 4 2

24 1 4 82 8 16 1 5 2 164 2( ) ( 2 ) 2 (2 ) ( ) ( ) 2 .
5 3 3 35 7 105 3 9 27 35 27

s

s s

g s s s s s s s s s e s s

g s e s s s s s e s s

= + + − + + − + − + − − + −

= + + + − + − − − + + + −
 

Here, the exact solution is 

1

2

( ) 1
( ) exp( ).

y s s
y s s

= +
=

 

To solve Eq.(35) via the method, first we need to calculate the Taylor expansion of the functions , 

, 
1( )g s

2 ( )g s ln 1s t− +  and 2s t− + , with respect to all their arguments and then substitute them in Eq.(35). 

We applied the method (with ) to Eq.(35), and the following approximate solutions have been found  4m =

2 3
1

2 3 4
2

1 1 1 5( ) 1 ,
2 8 16 128

1 1 1( ) 1 .
2 6 24

y s s s s s

y s s s s s

= + − + −

= + + + +

4

 

The numerical results are illustrated in Fig. 1 and Table 1. 

is  1( )iy s  1( )iy s  2 ( )iy s  2 ( )iy s  
0 1.000000 1.000000 1.000000 1.000000 

0.1 1.048808 1.408808 1.105170 1.105170 
0.2 1.095437 1.095445 1.221400 1.221402 
0.3 1.140121 1.140175 1.349837 1.349858 
0.4 1.183000 1.183259 1.491733 1.491824 
0.5 1.224121 1.224744 1.648437 1.648721 
0.6 1.263437 1.264911 1.821400 1.822118 
0.7 1.300808 1.303840 2.012170 2.013752 
0.8 1.336000 1.341640 2.222400 2.225540 
0.9 1.368683 1.378404 2.453875 2.459603 
1 1.398437 1.414217 2.708333 2.718281 

Table 1. Numerical results for Example 2. 
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Fig. 1: The results of Example 2 .    
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