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Abstract. TV minimizing based PDE models have been proved to be the most effective tool for image 
restoration. However for many applications, it is desirable to reduce or remove the staircasing effect of a TV 
solution to restore more realistic contrast, features, geometry and textures. In this paper, we propose and 
investing a bounded constrained regularization technique to improve the TV solution. A numerical method 
about the partial differential equations is attempted. Notable improvements are obtained by numerical 
experiments. 
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1. Introduction 
Variational partial differential equations (PDEs) models are extremely studied in recent years for solving 

image restoration problems. Especially the total variation (TV) based PDEs [28] are extremely effective in 
edge preserving, as shown in the literature [1-3], [8-12], [15], [20-32]. 

In recent report [10], various attempts that have been made to improve the TV models are pointed out. 
The main purpose is to reduce or remove the staicasing effect associated with a TV solution. Sophisticated 
functional minimization problem have been proposed [10]. These models demand equally sophisticated 
computational algorithms which do not yet exist. 

In this paper, a much simpler modification of the TV model is proposed, which results in reduction of the 
staircasing effect compared with TV. One idea of §2 is to introduce a BC into the TV model. (Moreover, we 
shall concentrate on deriving effective nonlocal schemes to solve the proposed model by its associated Euler-
Lagrange equations. To this end, we generalize the Primal Dual idea of [11] to this case as discussed in §3. 
Finally in §4, we demonstrate the improvements obtained from our new BC model. 

2. A Modified TV Model 
LetΩ denote the image domain (for instance, the computer screen), and is usually a rectangle or a unit 

square in 2R for the sake of simplification. We can use f = f(x; y) to represent an observed image. Our image 
denosing problem is to find original image  u(x; y)u =  s.t. 

 η u f +=                                                                      (2. 1) 

Where is an unknown Gaussian additive noise of variance . η 2σ

As is known, the Rudin, Osher and Fatemi (ROF) model [28] proposed to solve u from 
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However, such a solution will have the stairing effect e.g. whenλ is relatively small, tower-shaped or 
dome-shaped features will not be visible in a TV solution [28]. We now consider a modified model. 

Assume an upper bound,Σ , on the norm of the true solution, u, is known, and enforce regularization by 
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computing a solution of the constrained minimization problem: 
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or consider the following constrained minimization problem: 
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We note that in many applications it may not be possible to find a good upper bound . But the 
numerical method considered in this paper may be appropriate in these situations. Especially, if a good 
bound is known, then knowledge of this information should be exploited. Similar considerations have been 
presented by many authors, such as Gander [18] and Dementiev and Nagy [17] and lots of LSS (Least 
Squares minimization over a Sphere) or constrained least squares problems. See [16] and its references. 

Σ

We consider the equivalent unconstrained optimization of (2.3), or (2.4) (the proof of equivalence is 
similar to [6]) 
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                                    (2. 5) 

where μ is another multiplier. This model retains the properties of ROF model—recover the edges of the 
original image and regularize the geometry of level sets without penalizing discontinuities. And it allows us 
to reduce the error of edges between original and restoration images. Consider as Soblev 

norm

|||| ⋅
22

2,1 |||||||| uu ∇+=⋅ . Its corresponding Euler-Lagrange equation is 
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Where )2/(1 λα = , λμμ /1 = . In this paper, we are concerned the development of efficient algorithms 
for computing solutions of (2.3), but the theoretical results characterizing properties of the solutions are 
similar to [6] or [14]. 

3. A Primal Dual Method 
Before we discuss how to solve (2.6) we briefly review the commonly used algorithm for (2.2). 
In their original paper [28], Rudin et al. proposed the use of artificial time marching to solve the Euler-

Lagrange equations which is equivalent to the steepest descent of the energy function. More precisely, 
consider the images as a function of space and time and seek the steady state of the equation 
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Here, ββ +∇=∇ 2||:|| uu  is a regularized version of || u∇ to reduce degeneracies in flat regions 

where . In numerical implementation, an explicit time marching scheme with time step and space 
step size is used. Under this method, objective value of the ROF model is guaranteed to be decreasing 
and the solution will tend to the unique minimizer as time increases. However, the convergence is usually 
slow due to the Courant-Friedrichs-Lewy (CFL) condition, for some constant c > 0, 
imposed on the size of the time step, especially in flat regions where

0|| ≈∇u tΔ
xΔ

||2 uxct ∇Δ≤Δ
0|| ≈∇u . 

In a later paper [1], Osher and Marquina considered an improved time marching method for 
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However, a different CFC condition must also be satisfied. 
To completely get rid of CFL conditions, Vogel and Oman proposed in [32] a fixed point iteration 

scheme (FP) which solves the stationary Euler-Lagrange directly. The Euler-lagrange equation is linearized 
by lagging the diffusion coefficient and thus the th)1( −+i iterate is obtained by solving the sparse linear 
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equation: 
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Although the linear solvers in [31-32] are fast, the NL steps are not generally fast. 
In an attempt to improve the Newton menton, Chan, Golub and Mulet[11] proposed the Primal Dual idea 

(as in mixed FEM) by treating the term ||/ uu ∇∇ in the primal Euler-Lagrange equation as an independent 
variable g, leading to the system: 
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                                                                 (3. 4) 

The above system of nonlinear equations is solved by Newton's method and quadratic convergence rate 
is almost always achieved. In the Newton updates, one may combine the two equations to eliminate the fixed 
point iteration (3.4). Empirically, this primal-dual method is much more robust than applying Newton's 
method directly to the primal problem in u only. 

Now we consider solving differential equation (2.6). 
The idea to solve (2.6) is, similar to [11], to introduce new variable w: 
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and replace (2.6) by the following equivalent system of nonlinear PDEs 
1 1 1
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Now we linearize this (u;w) system by Newton method. 
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Equation (3.7) can be solved by eliminationδω , and solving the result equation for uδ  
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After uδ is obtained we can computeδω by the following equation 
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In our experiments, 1μ is nonnegative. 

Algorithm 1 
(i) Chooseα andμ and make sure the predictor value of image u. 1u
(ii) Use the formula (3.8), (3.9) to compute uδ andδω respectively. 

(iii) If , stop, else go to (ii). tolgg oldnew <||||/||||

If we choose a simple form of , , it is also an improvement. But Soblev norm 
seem to be more reasonable for our model. The numerical experiments show the validation. If we use the 
simple Euclid norm, the corresponding Euler-Lagrange equation is changed into 

|||| u 2222 |||| uu −Σ=−Σ
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and it is easy to solve. Of course, if we set uu ∇=|||| , it is still an improvement. The corresponding 
Euler-Lagrange equation is changed into 
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Recently, in [19], a similar model are considered from the view of a bilaterally constrained optimization 
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problems and super-linear convergence is obtained. But it is different from our model. One is that the 
parameter 0>μ in our model but they let 0>=− αμ in [19]. Another difference is that the norm are 
changeable in our model but the norm is fixed in their model. 

|||| u

4. Numerical Examples 
In this section we present results of our denoising algorithms on some images. The noise image is 

obtained by adding random noise to the true image . More precisely, we add random error to each pixel 
of the true images or synthetic images such that signal to noise ratio

f
n 0u

1=snr , where 
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and u is the mean of the signal and is the noise [28]. 0u n

Our first group images are gray-scale images from 6464× to 256256× pixels and Gaussian white noise 
is added. The original and noisy images are shown below (Figure 1). We take values of 60 
and for210− α and β , and ,410−=tol n/8=μ . The processed images from ROF model and BC model are 
displayed in Figure 1 and the RMSE and SNR for comparison can be found in Table 1. We use here for the 
RMSE and the SNR the expressions 
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where is the computing solution of the true image [30]. The computing times are nearly same. *u 0u

 
Figure 1 From first row to third row are ,6464× 128128× and 256256× separately. 60=α , and .The far 

left is original image and the left second is noise image.The right second is from ROF and far right from BC. 

210−=β 410−=tol
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We apply both methods to three sizes of the image shown in Figure 1 and compare the performance of 
ROF and our model for the images. The results for comparison can be found in Table 1 clearly. 

Next we test our method on a more realistic image, the satellite image with SNR=4 and SNR=1. Both 
images are in size and have range[0,255].  in two cases,256256× 210−=β 50=α . We choose (3.11) as our 
model and RMSE and SNR still use (4.1) and (4.2). The results can be observed from Figure 2 and Table 2. 

 

Table 1 The comparison of the denoising results in various size by ROF and BC. 

 

Table 2. The comparison of the denoising results for Satellite by ROF and BC. 

   

   

Figure 2 (Satellite) Top left is original image and top right is noise image. 

50=α ,  and . Bottom left is from ROF model and bottom right from BC model. 210−=β 410−=tol

5. Conclusions 
The standard ROF model worked well in denoising problems but we found that a modified ROF model 

can improve its performance in reducing its stairing effect. With our recommended Bound Constrained 
Regularization technique we observe that it gives over 5% improvement for RSEM and we can get more than 
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15% for SNR. So our method is efficient and robust. Here we applied some projection methods that is 
elementary. We suggest that the continuation Newton method can be used directly if small β is desired (such 

as ), or the truncated versions of Newton (continuation) algorithm based on the conjugate gradient 
method with incomplete Cholesky as preconditioner. As an alternative solution method, we may consider the 
multi-grid method with the use of the Krylov acceleration procedure made the convergence fast [13]. 

410−=β
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