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Abstract. Bounds for the extreme eigenvalues involving trace and determinant are presented. Also, we 
give the upper bounds for the Perron root of a nonnegative symmetric matrix under certain conditions. 
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1. Introduction  
Let A  be an n  complex matrix with singular values n× ( ) ( ) (1 2 n )A A Aσ σ σ≥ ≥ ≥ . 

The properties 

( ) ( ) ( ) 2
1 2 n F

A A Aσ σ σ+ + + = A , 

( ) ( ) ( )1 2 detnA A Aσ σ σ = A  

are well known, where 
F

A  and  denote the Frobenius norm of det A A  and the determinant of A , 

respectively. In [1], Rojo presents monotonic sequences of bounds for ( )Akσ ( )1 k n≤ ≤ : 

( ) ( ) ( )1 2 1 2n n
k Aα σ β− −≤ ≤ , 

where α  and β  are the positive roots of the equation  

( )2 21 det 0nn
F

x A x n A −− + − 1 = . 

And if , 0 0x = ( ){ }1 2n
kx −  is an increasing sequence of lower bounds for ( )n Aσ ; if ( )2 1

0
n

F
x A −= , 

( ){ }1 2n
kx −  is a decreasing sequence of upper bounds for ( )1 Aσ  where { }kx  is a sequence defined by  

( )

( )
2 1

1 2 2 1

det1
1

n n
k

k n
kF F

A xnx
A n A x

−

+ −

−−
= ⋅

−
. 

Similarly, Let A  be an  complex matrix with real and positive eigenvalues  n n×
( ) ( ) ( )1 2 0nA A Aλ λ λ≥ ≥ ≥ > . 

The properties 

( ) ( ) ( )1 2 nA A Aλ λ λ+ + + = trA , 

( ) ( ) ( )1 2 detnA A Aλ λ λ = A  

motivate one to estimate the bounds for eigenvalues of A  where trA  denotes the trace of A . In [2, p. 
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20-21], monotonic sequences of bounds for ( )k Aλ ( )1 k n≤ ≤  are presented using the same technique in [1] 
as follows: 

( )1 1n n
k Aα λ β− −≤ ≤ , 

where α  and β  are the positive roots of the equation 

( )( )1 11 det 0nnx trAx n A −− + − = .                                                      (1) 

And if , {0 0x = }1n
kx −  is an increasing sequence of lower bounds for ( )n Aλ  if ( )1 1

0
nx trA −= , { }1n

kx −  

is a decreasing sequence of upper bounds for ( )1 Aλ  where { }kx  is a sequence defined by 

 
( )

( )

1 1

1 1

det1
1

n n
k

k n
k

A xnx
trA n trA x

−

+ −

−−
= ⋅

−
.                                                          (2) 

In this paper, let  be the matrices with real and positive eigenvalues ( 2n nA C n×∈ ≥ )
( ) ( ) ( )1 2 0nA A Aλ λ λ≥ ≥ ≥ > . We use this symbol throughout. We give bounds for the extreme  

eigenvalues using trace and determinant.  
The paper is organized as follows. In Section 2, two short proofs of lower bound for the smallest 

eigenvalue of A  are given. In Section 3, we obtain another lower bound for the smallest eigenvalue, which 
is sharper than the result in Section 2. Examples are presented in Section 4 which give comparisons with 
results in the related literatures. Finally, in Section 5, we consider the upper bounds for a nonnegative 
symmetric matrix under certain conditions. 

2. Two simple lower bounds for the smallest eigenvalue 
In [3], Yu and Gu give lower bounds for the smallest singular value using arithmetic-geometric-mean 

inequality. Here we utilize the similar technique and give the following theorems. 

First, we prove the following weaker version of lower bound for ( )n Aλ . 

Theorem 2.1. Let  be a matrix with real and positive eigenvalues ordered in decreasing 

sequence and tr . Then 
( 2n nA C n×∈ ≥ )

A n=

( )
11 det

n

n
nA A

n
λ

−−⎛ ⎞> ⎜ ⎟
⎝ ⎠

.                                                             (3) 

Proof. Considering the fact that the geometric mean of positive number doer not exceed their arithmetic 
mean and the identity 

( ) ( ) ( )1 2 nn trA A A Aλ λ λ= = + + + , 

We have 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 2 1

1 2 1 1 1

n n n
n n

n

A A A n A nA A A
n n

λ λ λ λ
λ λ λ

− −

1n

−
−

−

+ + + −⎛ ⎞ ⎛ ⎞ ⎛ ⎞≤ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠ ⎝ ⎠
<

−
. 

Multiply this inequality by ( )n Aλ  and solve for ( )n Aλ  we obtain the result. 

Theorem 2.2. Let  be a matrix with real and positive eigenvalues ordered in decreasing 

sequence and tr . Then 
( 2n nA C n×∈ ≥ )

A n=

 ( )
11 1det 1 det

n n

n
n nA A

n n
λ

−

A
⎡ ⎤− −⎛ ⎞ ⎛ ⎞> +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
.                                            (4) 

Proof. The arithmetic-geometric-mean inequality and the identity  
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( ) ( ) ( )1 2 nn trA A A Aλ λ λ= = + + +  

give 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1 2 1

1 2 1 1 1

n n
n n

n

A A A n A
A A A

n n
λ λ λ λ

λ λ λ
− −

−
−

+ + + −⎛ ⎞ ⎛
≤ =⎜ ⎟ ⎜− −⎝ ⎠ ⎝

⎞
⎟
⎠

               (5) 

Multiplying both sides of this inequality by ( )n Aλ , we have  

( ) ( ) ( ) ( ) ( )
1

1 2det
n

n
n n

n A
A A A A A

n
λ

λ λ λ λ
−

−⎛ ⎞
= ≤ ⎜ ⎟

⎝ ⎠
. 

Hence, 

( ) ( ) ( )1 1 1 1 1 11 1det
nn n

n n
nA A A

n n
λ λ− − n−− ⎡ ⎤≥ + ⎣ ⎦  

( )1 11 det nn A
n

−−
> . 

Because , we obtain ( ) 0n Aλ >

( ) ( ) ( )1 1 1 1 11 1 1det det
n

n n
n

n nA A
n n n

λ − −− −⎛ ⎞> + ⎜ ⎟
⎝ ⎠

n nA − . 

Solving this inequality for ( )n Aλ  gives 

( )
11 11 1 1det 1 det

nn n

n
n nA A

n n n
λ A

−− −⎡ ⎤− −⎛ ⎞ ⎛ ⎞> +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

. 

Since , it follows that 2n ≥

 ( )
11 1det 1 det

n n

n
n nA A A

n n
λ

− ⎡ ⎤− −⎛ ⎞ ⎛ ⎞> +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

. 

Remark 1. From the above proof we know that the lower bound for ( )n Aλ  in (4) is an improvement of 
the result in (3). 

3. Further lower bound for the smallest eigenvalue 
First, we give the following corollary which follows from (2) immediately. 

Corollary 3.1. Let  be a matrix with real and positive eigenvalues ordered in decreasing 

sequence and tr . Let 

( 2n nB C n×∈ ≥ )
B n= { }kx  be a sequence defined by  

 
( )1 1

1 1

det1
1

n n
k

k n
k

B xnx
n x

−

+ −

−−
= ⋅

−
.                                                          (6) 

Then, 

1. if , {0 0x = }1n
kx −  is an increasing sequence of lower bounds for ( )n Bλ ; 

2. if 1 1
0

nx n −= , { }1n
kx −  is a decreasing sequence of upper bound for ( )1 Bλ . 

Let  be a matrix with tr( 2n nB C n×∈ ≥ ) B n= . Let 0 0x = . Then, from (6), 

( )1 1
1

1 det nnx B
n

−−
= . 
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Hence, 

( )1 1
1

1 detn n
n

nx B B
n

λ− −−⎛ ⎞= <⎜ ⎟
⎝ ⎠

 

This is the result of Theorem 2.1. 
Again from (6), we have 

( )1 1
1

2 1
1

det1
1

nn

n

B xnx
n x

−

−

−−
=

−
 

( ) ( )
( )

1 1
1

1 1 det1 det
1 1 det

n
n

n

n n Bn B
n n n B

−

−

− −−
=

− −
 

( )
( )

1
1 1

1

1 1 1 1det 1 det
1 1 det

n
n

n

n nB B
n n n n n B

−
−

−

⎡ ⎤− −⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠ − −⎢ ⎥⎣ ⎦

. 

We know that 1
2
nx −  is a lower bound for ( )n Bλ . Then, 

( ) 1
2
n

n B xλ −>  

( ) ( )

11 1 1

1 1

1 1 1 1 1 1 1det 1 det det 1 det
1 1 det 1 1

nn n n n

n n

n n n nB B B B
n n n n nn n B n n

−
− − −

− −

⎡ ⎤ ⎡− − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + > +⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠− − − −⎢ ⎥ ⎢⎣ ⎦ ⎣

. 
Thus, we have presented the following lemma. 

Lemma 3.2. Let ( )2n nB C n×∈ ≥  be a matrix with real and positive eigenvalues ordered in decreasing 

sequence and tr . Then B n=

  ( ) ( )
11 1det 1 det

n n

n
n nB B B

n n
λ θ

−

B
⎡ ⎤− −⎛ ⎞ ⎛ ⎞> +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
, 

where, 

( )
( ) 1

1
1 1 detnB

n n B
θ −=

− −
.                                                         (8) 

With the Lemma 3.2 we may now establish the following theorem. 

Theorem 3.3. Let  be a matrix with real and positive eigenvalues ordered in decreasing 
sequence. Then 

( 2n nA C n×∈ ≥ )

( ) ( )
11 1det 1 det

n n

n
n nA A A
trA trA

λ θ
−

A
⎡ ⎤− −⎛ ⎞ ⎛ ⎞> +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
,                                       (9) 

where  

( )
( ) ( )1

1
1 1 detn nA

n n n trA
θ −=

− − A
.                                                (10) 

Proof. Applying Lemma 3.2 to matrix ( )/B n trA A= . 

This theorem contains Lemma 3.2 as a special case. 

4. Comparison with related results 
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Estimation of extreme eigenvalues is important in theory and practice. Bounds for eigenvlaues have been 
obtained by many authors. Let ( )2n nA C n×∈ ≥  be a matrix with real and positive eigenvalues 

( ) ( ) ( )1 2 0nA A Aλ λ λ≥ ≥ ≥ > n and let 1 k l≤ ≤ ≤ . Bounds for k lλ λ  and k lλ λ+ + , involving 

, and  only, are presented as follows. , , ,k l n trA det A
Theorem 4.1 [4, Theorem 1]. Let 1 n . Then k l≤ ≤ ≤

( )

( ) ( )
1 11

1 11 det
n kk

l k
k l

k A
trA

λ λ
− +−

− +⎡ ⎤−⎛ ⎞ ≤⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

1
k l

l k
λ λ+ +

≤
− +

 

( )1

1 det
n lltrA n l A

l l trA

−
⎡ ⎤⎛ ⎞ ⎛ ⎞≤ − − ⎢⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎥ .              (11) 

Theorem 4.2 [4, Theorem 3]. Let 1 n . Then k l≤ ≤ ≤

( )

1

1

1 1
1 det 11

nk

k

l k k trAtrA
n k A nk

+

−

⎡ ⎤− + ⎛ ⎞−⎢ ⎥⎜ ⎟− + +⎝ ⎠−⎢ ⎥⎣ ⎦
 

k lλ λ≤ + +  

( )
1 11 11

det 1

l nl trAl k
A l n

+ ++⎛ ⎞ ⎛ ⎞≤ − + ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
.                                                (12) 

Let us recall another possible eigenvalue bounds using , and  only. Wolkowicz and Styan 
derive the following theorem. It is worth noting that the eigenvalues are real; their positivity is not needed. 

, , ,k l n trA 2trA

Theorem 4.3 [5, Theorem 2.2]. Let 1 n . Then k l≤ ≤ ≤

( )2
21 1

1
trAtrA k trA

n n k n n

⎛ ⎞−
− −⎜ ⎟

⎜ ⎟− + ⎝ ⎠
 

( )2
21

1
k l trAtrA n l trA
l k n l n n

λ λ ⎛ ⎞+ + −
≤ ≤ + −⎜

⎜− + ⎝ ⎠
⎟
⎟

.                                        (13) 

As special cases, bounds for individual eigenvalues, especially for the smallest eigenvalue, can be 
obtained by the above theorems. We conclude the section with two examples to compare the lower bounds 
for the smallest eigenvalue and give some remarks. 

Example 1. Let 

3
2

2
A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

This matrix was used in [4] to compare the lower bounds for ( )3 Aλ  and they were  by 

(11),  by (13) and 

( )3 0.980Aλ ≥

( )3 1.667Aλ ≥ ( )3 1.724Aλ ≥  by (12). In this note, the bound (9) gives 

, only prior to the result (11). ( )3 1.4522Aλ ≥

To further illustrate our bounds we consider the following example. 
Example 2. Let 
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1 0 0.2
0 1 0.5
0.2 0.5 1

B
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

For this matrix with , we have the comparison results of lower bounds for 3trB = ( )n Bλ  in Table 1. 

 (3) (4) (7) 

( )3 Bλ >  0.3156 0.3819 0.4125 

 (11) ( )k l n= = (12) ( )k l n= = (13) ( )k l n= =  

( )3 Bλ ≥  0.3156 -0.0081 0.3782 

Table 1: Lower bounds for ( )n Bλ . 

 However, the exact smallest eigenvalue is ( )3 0.4615Bλ = . 

Remark 2. From the Example 2 we see that the lower bound for ( )n Bλ  is accurate by (7). Theorem 4.2 

in [4] fails to provide nontrivial lower bound for ( )n Bλ  in Example 2. 

Remark 3. The bound (7) is always at least as large as the bound (4). Since for any matrix B  with 
,  trB n=

( )
( )

1

1
det 1

nn

nin
i

i
i

B
trBB B

n n

λ
λ =

=

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟= ∏ ≤ = =⎜ ⎟
⎜ ⎟ ⎝ ⎠
⎜ ⎟
⎝ ⎠

∑
. 

Hence,  
11 det 1

nn B
n

−−⎛ ⎞ <⎜ ⎟
⎝ ⎠

. 

This implies  and thus the lower bound for ( ) 1Bθ > ( )n Bλ  in (4) has been improved  by Lemma 3.2. 

5. Upper bounds for the Perron root of nonnegative symmetric matrices 
Nonnegative matrix has applications in many areas [6]. Let A  be a matrix with all entries nonnegative. 

By the Perron-Frobenius theorem, A  has a characteristic root equal to its spectral radius, which is called the 
Perron root of A  and is usually denoted by ( )Aρ . Bounds for the Perron root have been surveyed by many 
authors. In this section, we give upper bounds for the Perron root of a nonnegative symmetric matrix 
satisfied some certain conditions. 

We have the following result. 

Theorem 5. Let A  be a nonnegative symmetric matrix which is strictly diagonally dominant. Let { }kx  

be the sequence defined by (2). Then { }1n
kx −  is a decreasing sequence of upper bounds for ( )Aρ  if 

( )1 1
0

nx trA −= . 

The result is obvious and hence its proof is omitted. 
Example 3. Let 
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4 1 0 2
1 5 1 2
0 1 6 3
2 2 3 8

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

Clearly, A  is positive definite and . For this matrix equation (1) is ( ) 11.4698Aρ =
4 23 25.0330 0x x− + = . 

The application of Theorem 5 gives the following upper bounds for ( )Aρ  in Table 2. 

k  kx  1n
kx −  

0 2.8439 23.0008 
1 2.4811 15.2733 
2 2.3272 12.6098 
3 2.2966 12.1131 
4 2.2954 12.0944 
5 2.2954 12.0944 

Table 2: Upper bounds for ( )Aρ . 

Remark 4. In Theorem 5, the strictly diagonal dominance is sufficient to guarantee nonnegative 
symmetric matrix A  is positive definite. See the following matrix 

4 1 0 2
1 5 1 2
0 1 6 3
2 2 3 3

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

which is not strictly diagonally dominant in the last row and we can also apply Theorem 5 to estimate the 
upper bounds for the Perron root of A . Actually the above matrix A  is positive definite with eigenvalues 

, , , ( )1 0.1907Aλ = ( )2 3.4724Aλ = ( )3λ 5.0316A = ( )4 9.3053Aλ = . 

6. References  
[1] Rojo O. Further Bounds for the Smallest Singular Value and the Spectral Condition Number. J. Computers Math. 

Applic. 1999; 38: 215-228. 
[2] Liu L. M. Estimation for the Singular values and Eigenvalues of matrices. Dissertation of Master, Univ. ESTC, 

2006. 
[3] Yu Y. S.and Gu D. H. A note on a lower bound for the smallest singular value. J. Linear Algebra Appl. 1997; 253: 

25-38. 
[4] Merikoski J. K. and Virtanen A. Bounds for the Eegenvalues Using the Trace and Determinant. J. Linear Algebra 

Appl. 1997; 264: 101-108. 
[5] Wolkowicz H. and Styan G. H. P. Bounds for eigenvalues using traces. J. Linear Algebra Appl. 1980; 29: 471-506. 
[6] Berman A. and Plemmons R. J. Nonnegative Matrices in the Mathematical Sciences. SIAM Press, Philadelphia, 

PA, 1994. 

JIC email for contribution: editor@jic.org.uk 


