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Abstract. In this paper, the nonclassical symmetries and group invariant solutions of the Boussinesg-
Burgers equation have been discussed. By using the nonclassical method, we obtain nonclassical symmetries
that reduce the Boussinesg-Burgers equation to ordinary differential equation, and several invariant solutions.
We remark that some of them are new solutions of the Boussinesg-Burgers equation.
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1. Introduction

The symmetry analysis has played an important role in the construction of exact solutions to nonlinear
partial differential equations. The nonclassical symmetries method (NSM) was introduced in 1969 by
Bluman and Cole [1] in order to obtain new exact solutions of the linear heat equation. The NSM consists of
adding the invariant surface condition to the given equation, and applying the classical symmetries method
(CSM) [2]. Besides, the NSM may yield more solutions than the CSM. The NSM has been successfully
applied to various equations, for the purpose of finding new exact solutions [3, 4]. Presently there exists an
extensive body of literature in which we refer the reader to the books by Bluman and Kumei [5] Olver[6] and
Rogers and Ames[7].

This paper is arranged as follows: we first introduce differences between CSM and NSM briefly.

In section 2, we introduce the NSM by Solving the Burgers equation. In section 3, we make use of the
NSM to obtain the nonclassical symmetries of the Boussinesg-Burgers equation. In section 4, we obtain the
group invariant solutions of the Boussinesq-Burgers equation. In section 5, we make some final comments.

For equations in (1+1) dimensions, one seeks the invariance of a differential equation:
A, (X tu,u,,U, U, Uy,,..) =0, (1.1)

Suppose the form of Eq. (1.1) is invariant under a group action on (x,t,u)

infinitesimals [8]:

space given by its

X =x+ X(xtu)e+o(s?),
t" =t+T(x,t,u)e+0(e?),
u =u+U(xtu)s+o(s?).
The invariance requirement is
A/, , =0, (1.2)

where T'™ is the n th extension of infinitesimal generator[9]
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re1o,x 2,08 (13)
ot OX ou
This leads to a set of determining equations for the infinitesimals X, T and U that, when solved, gives rise
to the symmetries of (1.1). Once symmetries are known for a differential equation, invariance of the solution
leads to the invariant surface condition [10]:

A, =Xu,+Tu, -U =0. (1.4)

Solutions of (1.4) lead to a solution Ansatz, which, when substituted into Eq.(1.1) gives a reduction of
the original equation. A generalization of the so-called “classical method” of Lie was proposed by Bluman
and Cole. Today, it is commonly referred to as the “nonclassical method”. Their method seeks invariance of
the original equation augmented with the invariant surface condition (1.4).

However, all exact solutions obtained by the classical method also be obtained by the nonclassical
method .Unlike the determining equations for the classical method which are linear, the determining equ-
ations for the nonclassical method are usually highly non-linear.

TN, 4,0 =0. (1.5)

Solving this governing equation leads a set of determining equations for infinitesimals X, T and U.
Solving the determining equations gives rise to the nonclassical symmetries of Eq. (1.1)., These symmet- ries
gives a reduction of the original equation. When the reduced equation is solved, we obtain the invariant
solutions under group of the original equation (1.1).

2. The nonclassical symmetries and group invariant solutions of the Burgers
equation

In this section, we make use of a simple equation to introduce the NSM. In 1948, Johannes Martinus
Burgers put forward in the paper A Mathematical Model Illustrating the Theory of Turbulence a type of
equations called the Burgers equation, which was used to describe the turbulence of the free fluid. The
Burgers equation is expressed as follows:

u,+uu, —u, =0 (2.1)
If we denote the Burgers Eq.(2.1)by A, and the invariant surface condition with T=k by A, then

A, =U, +UU, —U, (2.2)

A,=Tu,+Xu,-U (2.3)

The determining equations for the nonclassical symmetries of the wave equation are obtained by
requiring the governing equation as follows:

TOA s =0 (2.4)
Where the infinitesimal generator I is given by
=T 2 + X 9 +U 9
ot OX ou
With the second extensions as
ou, ou,

r®=r®4uy, i+um 0 +U 0 (2.5)
ou,, ou,, ou

The coefficients of the operators in (2.5) is given by
Uy =D, (U - Xu, —Tu,) + Xu, +Tu, = D, (U — Xu,) + Xu, (2.6)

U, =D, U - Xu, -Tu,) + Xu,, +Tu,, =D, (U — Xu, ) + Xu,, 2.7)

XX

[x]
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Upog = DU = Xu, =Tu) + Xu,, +Tu, = D,, (U = Xu,) + Xu,, (2.8)
Invariance of the nonlinear wave equation is given by Eq.(2.4),which by (2.5) gives
2
TOA ], ga,0=Up+Uu,+uU;,,-U,, =0 (2.9)

Substituting (2.6)-(2.8)into (2.9) gives the governing equation for the infinitesimals X,T,U. Solving this
governing equation leads to a set of the determining equations for X,T,U. Consequently, solving determining
equations, we can obtain the nonclassical symmetries are:

o, =1-1u,
o, =U, 03 =L,
Next, we will make use of these symmetries to obtain the group invariant solutions of Burgers equation.

Lemma. If o is one of the symmetries of the equation (1.1), then the group invariant solutions for the
corresponding invariant group can be obtained by solving the following equations:

A, (x,t,u,v,u,,u,v,,v,...)=0
o(u)=0.
As is known to us all, ifo;, 0, and o, are symmetries of an equation, their linear displacements are

still symmetries of the equation.

Case 1: 0, = 04 + 0, . Following u, —tu, +1= 0and solving this partial differential equation, we can

. t? L : : .
obtaind = x+?, u= f()—t. Substituting it into (2.1), we can get a second-order ordinary differential
equation:

f"—ff'+1=0.

Solving the equation above, under initial condition f({)/,_, =0, we can obtain a special
solution: f () =— 1{—%42 +%012§3+%c1§4 +...

So u,(x,t) =—¢ (x+£)—1(x+£)2+1c2(x+£)3+10(x+£)4+ —t is the group invariant
Bl 2 2 et 20 gt 20 T

solution of the Burgers equation.
Case 2. o,=0,+0, . Following 1-tu,+u, =0 and solving this equation, we can

obtainu, (X,t) = ﬁ-f- o(t) .Substituting it into (2.1).we can getp(t) = ﬁ :

X+C . L . . .
Therefore, uz(x,t)zt—1 is the group invariant solution of the Burgers equation, where C is a

constant.
Case 3: o0,=0,—0, . Following u, —u, =0 and solving this equation, we can get
¢ =x+t,u= f(g). Substituting them into (2.1), we can get a second-order differential equation:
fr—ff'—f'=0.

Solving this equation, we can obtain f () = ,/2c, —1tan[,/2c, —1(%4“ +c,)]-1.

So u3(x,t)=\/2c1—1tan[\/2c1—1(%§+c2)]—1 is the group invariant solution of the Burgers

equation, where C, and C, are constants and{ = X +t.

Case 4: o0, =0,+0,+0, . Following 1-tu, +u, +u, =0 and solving this partial differential
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. . t? - . : :
equation, we can obtaind =t —? —X, u= f({)—t. Substituting them into (2.1), we can get a differential

equation: f"+ ff'— f'+1=0.
If its solution f (¢) exist, and then u = f () —t s the group invariant solution of the original equation.

3. The nonclassical symmetries for the Boussinesg- Burgers equation

It is well known that the nonlinear partial differential equations (NPDESs) are widely used to describe
many important phenomena in physics, biology, chemistry, etc. In the past several decades, a great number
of efforts have been made to study various nonlinear wave equations. There are many ways to obtain exact
solutions of partial differential equations, such as the Darboux transformation [11], the algebra-geometric
method, the Inverse Scattering transformation, and so on. In this paper, nonclassical symmetries method was
used to solve Boussinesg-Burgers equation.

The Boussinesg-Burgers equation is expressed as follows:
1
u, =—-2uu, +—Vv,
2 " (3.1)
1
Vi =Z Uy — Z(UV)X
2
If we denote Eq.(3.1) by A, and A] and the invariant surface condition with Tl:%and TZ:% (k=£0,h=0)

by A,, A}, then

A, =U, +2uu, —%vx , (3.2)
, 1
Al =V, _EUXXX +2(uv), (3.3)
A, =Tu+Xu, -U, (34)
A, =T,v, + X,v, -V (3.5)

The determining equations for the nonclassical symmetries of the Boussinesg-Burgers equation are
obtained by requiring the governing equation as follows:

@
{Fl Al/Alzo,AZ:O =0

@ 1 ’ (3.6)
I A1/A5:0,A'2:o =0

where the infinitesimal generator I', I, is given by

l“l:X1£+Tlg+Uli+Vli
%x aat ag ov

61

r,=X,—+T,—+U, —+V, —
272 ot fou Pov

with the second extensions as

I W= I +Uiy h +Uig 2 +Viy 2 +Vig i
ou, ou, ov, ov,
ri(Z) =TI Y +u iftt] 0 +Uig d +U g 9 +Ving o + Vi 2 +Vig i’
au tt 6u tx au XX avtt aVXt aV)()(
0 0 0 0 0
r®=-r94y . — 4+, . —+U,  —+U 4V
i i i[ttt] 8U N i[ttx] auttx i[txx] autxx i[xxx] au » i[ttt] 8Vttt
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0 0 d _
+Vimg = Vig = T Vi EYRE (i=1,2) (3.7)
ttx txx XXX
The coefficients of the operators in (3.7) are given by
Uiy =D, U, =Xy, =Tu) + XU, +Touy, (3.8)
Ui[x] = Dx (UI - xlux _Tlut) + Xluxx +T1uxt’ (39)
Uiteg = Dy (Ui = XU, =Tou ) + Xou, +Tuy,, (3.10)
u iox] = Dxxx (UI - Xlux _Tlut) + Xluxxxx +T1uxxxt J (311)
Vi[t] =D, (V; = X,v, =T,v,) + X,V + T,V (3.12)
Ving = Dy (Vi = X,v, =T,V ) + X,v, +T,v, (i=1,2), (3.13)
The invariance of the nonlinear partial differential equation is given by Eq. (3.6), which by (3.7) gives
® 1

[7A y coa,-0 =y +2U5U, + 20U, — Evl[x] =0

(3.14)

@) A0 _ 1 _0
Fz Al /Ai:O,A'Z:O _V2[t] - EU 2[xxx] +2U 2[x]V + 2UV2[x] =0

Substituting (3.4),(3.5) and (3.8)-(3.13) into (3.14) gives the governing equation for the
infinitesimals X,T,U. Solving this governing equation leads to a set of determining equations for X,T,U. The
determining equations for the nonclassical symmetries of the Boussinesg-Burgers equation are:

-kU, X, = X, —kX,,U, +2U, =0,
kX, X, =0,
U, =0,
U, -2X,, =0,
-2X, =0,
-0.5v,, +0.5X,, =0,
0.5X,, =0,
U, +ku,U,-05v, =0,
-hv,, X, = X,, —hX,\V, =0,
hX,, X, =0,
oo T 09X
o +3X,, +1.5X
3X,, —U,, =0,
15X, =0,
2U,, =0,
U, — X, =0,
V,, =0,
2V,, —2X,, =0,
-2X,, =0,

-1.5U
-1.5U

:O’
=0,

1xu Tux
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V,, +hV,V, —0.5U

Solving above equations, we can obtain:

=0.

2 XXX

[EEN

X, =2ct+c,, T, =E’Ul =c,V, =0

X,=c,T, =%,u2 =0V, =c,

where c1,C,,C3 and ¢4 are arbitrary constants.
oy =U, 0O, =U,, oy =U+U, o, =2tu -1 o, =02t+u, -1
og, =U, +2tu, -1, o, =u,+(2t+u, -1

o, =V, +V,, 0, =V, o0, =V,-1 o, =V, oy =V,-1 o, =V, +V, -1

4. The group invariant solutions of the Boussinesg-Burgers equation.

Next, we will make use of these symmetries to obtain the group invariant solutions of Boussinesq-
Burgers equation.

Case 1: {“2“ _ . Following {L\j :8 , we can get u =f (t), v=g (t). Substituting it into (3.1) yields a first-order

0-4\/ X

ordinary differential equation. Solving it, we can obtain u= f (t)= A, v=g (t) =B, where A and B are
arbitrary constants.

Case 2: {63”:“'+3* . Following {3’13:8 ,solving it, we can obtain = x—t, u=f(), v=g(<).

61V=V[+ X X

—f'=—2ff"+05g’

Substituting it into (3.1), we can obtain{ )
—g'=05f"-2f-2fg’

. Integrating it, we can obtain

05f"—4f°+6f%-2f +c, =0.Ifits solutions f () exist, then the group invariant solution of the

Boussinesg-Burgers equation isu = f ().

=2tu 2tu 1=

x X, C
v, =0

0, substituting it into (3.1), we can get u==+-=,

Case 3: {G““ *_1.Following{
- 2t

O-AV X

v :T7wh|ch is group invariant solution of the Boussinesg-Burgers equation, where ¢ sand c; is an
integral constant.

Case 4: {05“ =@y, -

(U120 gubstituting it into (3.1), we can obtain

4v X

t Following {

X+Cq Cy
u= V=
2t+1 2t+1

which is the group invariant solution of the Boussinesg-Burgers equation.

Case 5: {%zu‘ . Following {”‘zg, we denote u = f(x), v =g(x).Substituting it into (3.1), we can

v, =

O—Zv Vt

21"+ 0.5g'=0
get 750 .
05" 2f4-2fg' =0

then u = f(x) is the group invariant solution of the original equation (3.1), where cy, is a constant.

Integrating it, we can obtain0.5f"—4f? +Cy, = 0.If its solutions f (x) exist, and

5. Conclusion

In this paper, we have discussed the Boussinesq-Burgers equation to demonstrate how to obtain the
nonclassical symmetries. During the process, we have discussed how the determining equations for the
nonclassical symmetries can be derived from the original equation and the invariant surface condition.
Besides, by using symmetries, we can reduce the partial differential equation to an ordinary differential
equation. Consequently, some of group-invariant solutions we obtain have not been found in other papers.
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