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Abstract. Based on the Chen-Harker-Kanzow-Smale smoothing function, a smoothing method with a 
smoothing variable is proposed for solving the second-order cone programming. Our algorithm needs to 
solve only one linear system of equations and to perform only one line search at each iteration. Without 
restrictions regarding its starting point, the algorithm is shown to be globally convergent. 
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1. Introduction 
The second-order cone programming (SOCP) problem is to minimize or maximize a linear function over 

the intersection of an affine space with the Cartesian product of a finite number of second-order cones. 
Consider the following SOCP problem 
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or its dual problem [1] 
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the variables. The set ( 1, ,iK i n)= … is the second-order cone (SOC) of dimension defined by ik
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Where  stands for the Euclidean norm. It is easy to see that the SOC  is self-dual and its interior is ·‖‖ iK
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where we use 1( , , )nx x x=  for the column vector  Thus, problems (1) and (2) can be 
simply written as 

1( , , )T T
nx x x= .T
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The set of strictly feasible solutions of (1) and (2) are: 
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0 0( ) {( , ) : , }TF D y s A y s c s K= + = ∈

0

 

respectively, where 
0 0 0

1 2 .nK K K K= × × ×  

Throughout this paper, we assume that 
0 0( ) ( ) .F P F D× ≠ ∅  Therefore it can be shown that both (1) 

and (2) have optimal solutions and their optimal values are coincident [1]. 
Recently the SOCP problems have received considerable attention, since they have a wide range of 

engineering applications [6] and include a large class of problems as special cases [5], such as linear 
programs and convex quadratic programs. Without loss of generality, we focus on the SOCP problems (1) 
and (2) with and  in the following analysis. 1n = 1k k=

As novel algorithms for solving optimization problems, smoothing methods (non-interior continuation 
methods) [2, 7, 8] perform very well in both theory and practice. However, many existing algorithms [2, 8] 
need to solve two linear systems of equations and to perform two or three line searches at each iteration. 
Moreover, the smoothing methods available are mostly for solving complementarity problems [2, 8] and 
variational inequality problems [7], whereas there is little work on smoothing methods for the SOCP. 

In this paper, we present a smoothing method for the SOCP based on the Chen-Harker-Kanzow-Smale 
(CHKS) smoothing function [4]. By introducing a smoothing variable, our algorithm reformulates the SOCP 
as a nonlinear system of equations. Then we solve the system by using Newton's method. It is shown that our 
algorithm has the following good features: 
(i) unlike interior point methods, our algorithm does not have restrictions regarding its starting point; 
(ii) the algorithm solves only one linear system of equations and performs only one line search at each 
iteration; 
(iii) if A  has full row rank, then any accumulation point of the iteration sequence generated by our algorithm 
is a solution of the SOCP. 

This paper is organized as follows. In Section 2, we give some preliminary results for the SOC and 
propose a smoothing method with a smoothing variable for the SOCP. In Section 3, we analyze the 
convergence properties of our algorithm. 

The following notations are used throughout this paper. The space of -dimensional real column vectors 
(respectively, real numbers) is denoted by

k
kR (respectively, R ). The set of all m k× matrices with real entries 

is denoted by The superscript T  denotes the transpose. For convenience, we often write .m kR ×
0 1( , )x x x=  

instead of the column vector 1
0 1( , )T T k .x x x R R −= ∈ ×  ·‖‖ , denotes the Euclidean norm. For any , 0α β >  

( )oα β= means that α β  tends to zero as 0.β →  

2. Preliminaries and Algorithm 
In this section, we briefly review the Euclidean Jordan algebra associated with the SOC [1, 3], which 

will play an important role in the design and analysis of our algorithm. Then we propose a smoothing method 
with a smoothing variable for the SOCP based on the CHKS smoothing function. We show the well-
definedness of our algorithm and investigate some properties of the iteration sequence generated by our 
algorithm. 

The Euclidean Jordan algebra for the SOC K  is the algebra defined by 

0 1 0 1( , ), ,T k ,x s x s x s s x x s R= + ∀ ∈  

with being its unit element. Given an element (1,0, ,0) ke = R∈ ,kx R∈  we define the symmetric 
matrix 
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It is easy to verify that 

, .k
x sx s L s L x s R= = ∀ ∈  

Moreover, xL  is positive semidefinite (positive definite) if and only if 0( ).x K x K∈ ∈  

Spectral factorization is one of the basic concepts in the Euclidean Jordan algebra. For any 
 its spectral factorization with respect to the SOC 1
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for  with 1, 2,i = 1kRω −∈  such that 1.ω =  For any ,x K∈  it is obvious that both spectral values of 

x  are nonnegative. By using the spectral factorization, we may define the functions on kR  associated with 
the SOC K  by 

2 2 (1) 2 (2)
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Under the assumption that  solving the SOCP problems (1) and (2) is equivalent to 
[1] finding 
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                                                                (3) 

Our smoothing method  aims to reformulate the optimality conditions (3) as a nonlinear system of 
equations, which does not contain any explicit inequality constraints like ,x K s K∈ ∈ or 0 ,x K∈   
By applying Newton's method to the system of equations, one can expect to find a solution of (1) and (2). 

0.s K∈

Our algorithm is based on the Chen-Harker-Kanzow-Smale (CHKS) smoothing function [4] 
: k k kRR R Rφ × × →  defined by 

2 2( , , ) ( ) 4 .x s x s x s eφ μ μ= + − − +  

 By Proposition 4.1 in [4], ( , , 0)x sφ  satisfies 

( , , 0) 0 0, , .x s x s x K s Kφ = ⇔ = ∈ ∈                                                  (4) 

Since ( , , 0)x sφ  is typically nonsmooth and ( , , )x sφ μ  is continuously differentiable for any 0μ >  [4], 

the variable μ is referred to as the smoothing variable. Let : ( , , ) k mz x y s RR kR×∈= ×  and define 

( , )
( , ) : ,

z
H zσ

μ
μ

σμ
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⎟                                                                (5) 

Where (0,1]σ ∈  is the parameter and 
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Let 1( , ) : ( , ).H z H zμ μ=  Since the system of equations ( , ) 0H z μ = automatically implies 0,μ =  it 
follows from (3), (4) and (5) that  

* * * * *: ( , , ) solves (3) ( ,0) solves ( , ) 0.z x y s z H z μ= ⇔ =  

In this way, we obtain a reformulation of the optimality conditions (3) where μ  is viewed as an 
independent variable. 

Algorithm 2.1 

Step 0 Choose , (0,1)σ δ ∈  and 0 (0, ).μ ∈ ∞ Let 0 0 0( , , ) k m kx y s R R R∈ × ×  be an arbitrary point and 
 Choose 0 0 0 0: ( , , ).z x y s= 0β >  such that 0 0 0( , ) .z μ βμΦ ≤‖ ‖  Set : 0.k =  

Step 1 If stop. ( ,0) 0,kzΦ =

Step 2 Compute a solution  ( ,  of the linear system ) : ( , , , ) k m k
k k k k k kz x y s R R R Rμ μΔ Δ = Δ Δ Δ Δ ∈ × × ×

 ( , ) ( , ).k k k k

z
H z H zσμ μ

μ
Δ⎛ ⎞′ = −⎜ ⎟Δ⎝ ⎠

                                                       (6) 

Step 3  Let  such that max{ | 0,1, 2, }l
k lλ δ= = …

 ( , (1 ) ) (1 ) .k k k k k k kz zλ σλ μ β σλ μΦ + Δ − ≤ −‖ ‖                                             (7) 

Step 4  Set 1 :k k kz z kzλ+ = + Δ  and 1 : (1 ) .k k kσλ μ+ = − : 1k kSet = +  and go to Step 1. μ
Remark Many smoothing methods available [2, 8] view μ  as a smoothing parameter. Thus they [2, 8] 

have to perform at least two line searches at each iteration to make both ( , )z μΦ‖ ‖ and μ  decrease 
gradually. However, in Algorithm 2.1 we view μ  as a smoothing variable. Therefore we need to perform 
only one line search at each iteration. 

To analyze Algorithm 2.1, we study the Lipschitzian and differential properties of the function ( , )H z μ  
and derive the computable formula for its Jacobian.  By using  Corollary 5.3 in [4] and following the proof of 
Proposition 6.2 in [4], it is not difficult to obtain the following properties of ( , ).H z μ  

Lemma 2.1 (i) The function ( , )H z μ  is globally Lipschitz continuous in  For any 2 1.m kR + + 0,μ >  
( , )H z μ  is continuously differentiable with its Jacobian 

0 0 0
0 0

( , ) ,
( , ) 0 ( , ) ( , )
0 0 0 1

T

A
A I

H z
M z N z P z

μ
μ μ μ

⎛ ⎞
⎜ ⎟
⎜ ⎟′ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                         (8) 

where 
1( , ) ,w vM z I L Lμ −= −        1( , ) ,w vN z I L Lμ −= + 1( , ) 4 ,wP z L eμ μ −= −

: ,v x s= − 2 2: 4w v e.μ= +  

 (ii) If A  has full row rank, ( , )H z μ′  is nonsingular for any 0.μ >  

Theorem 2.2 If A  has full row rank, Algorithm 2.1 is well-defined. 
Proof Since 0kμ >  by the algorithm and A  has full row rank, it follows from Lemma 2.1 (ii) that 
( , )k kH z μ′  is nonsingular. This demonstrates the well-definedness of Step 2. 
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z

Now we show that Step 3 is well-defined by induction. 
Due to (5), (6) and (8), we have 

    0
0 0 0 0

0

( , ) ( , ),
z

z μ μ
μ

Δ⎛ ⎞
′Φ = −Φ⎜ ⎟Δ⎝ ⎠

                                                        (9) 

    0 .0μ σμΔ = −                                                                      (10) 

For any (0,1],α ∈  let 

   0
0 0 0 0 0 0 0 0

0

( ) : ( , ) ( , ) ( , ) .
z

r z z z zα α μ α μ μ α μ
μ

Δ⎛ ⎞
′= Φ + Δ + Δ −Φ − Φ ⎜Δ⎝ ⎠

⎟                          (11) 

By Lemma 2.1 (i),  is continuously differentiable around Φ 0 0( , ).z μ  Then it follows from (11) that 

  ( ) ( ).r oα α=‖ ‖                                                                     (12) 

Taking into account the fact 0 0 0( , )z μ βμΦ ≤‖ ‖  and using (9), (10), (11) and (12), we have 

 
0 0 0 0 0 0 0

0 0

0

( , (1 ) ) ( ,
(1 ) ( , ) ( )

(1 ) ( ).

z z z z
z r

o

)α σα μ α μ α μ
α μ

β α μ α

Φ + Δ − = Φ + Δ + Δ

≤ − Φ +
≤ − +

‖ ‖ ‖

‖ ‖‖ α
‖

‖                               (13) 

(13) implies that there exists a constant (0,1]α ∈  such that 

0 0 0( , (1 ) ) (1 )z z 0α σα μ β σα μΦ + Δ − ≤ −‖ ‖  

holds for any (0, ]α α∈  and hence 1 1 1( , )z μ βμΦ ≤‖ ‖  holds by Step 4. 

Assume that (7) holds at the k -th iteration, i.e., there exists kλ  such that 

  1 1 1( , )k k kz ,μ βμ+ + +Φ ≤‖ ‖                                                             (14) 

where 1k k kz z zkλ+ = + Δ  and 1 (1 ) .k k kμ σλ μ+ = −  

Then we consider the ( -st iteration. Using the same argument as above and (14),  we obtain that 
there exists 

1k + )

1kλ +  such that 

1 1 1 1 1 1( , (1 ) ) (1 ) .k k k k k k kz z 1λ σλ μ β σλ μ+ + + + + + +Φ + Δ − ≤ −‖ ‖  

Therefore by Step 4 we have 

2 2 2( , )k k kz ,μ βμ+ + +Φ ≤‖ ‖  

where 2 1 1k k k kz z z 1λ+ + += + Δ + 1k and 2 1(1 ) .k kμ σλ μ+ + += −  Hence Step 3 is well-defined. 

This completes the proof. 
From Theorem 2.2, Algorithm 2.1 generates an infinite sequence {( , )}.k kz μ  A simple induction 

argument allows us to state the following properties of {( , )},k kz μ  which are useful in analyzing the 
convergence of our algorithm. 

Lemma 2.3 Suppose that A  has full row rank. Then we have 
(i) 1 0 0(1 ) (1 )( ) 0k kAx b Ax bλ λ−− = − − − →  as  ;k →∞

(ii)  as  1 0 0 0(1 ) (1 )( ) 0T T
k k kA y s c A y s cλ λ−+ − = − − + − → ;k →∞

(iii) 1 0 0(1 ) (1 ) 0k kμ σλ σλ μ−= − − >  for any  0;k ≥

(iv) ( , )k k kz μ βμΦ ≤‖ ‖  for any  0.k ≥
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3. Convergence Analysis 
In this section, we establish the global convergence of Algorithm 2.1. We show that the sequence { }kμ  

converges to zero and that any accumulation point of the sequence {  is a solution of the SOCP problems 
(1) and (2). 

}kz

Theorem 3.1 Suppose that A  has full row rank and that the iteration sequence {  generated by 
Algorithm 2.1 has at least one accumulation point. Then the sequence {

}kz
}kμ  converges to 0.  

Proof Since the sequence { }kμ  is monotonically decreasing and bounded from below by zero by 

Lemma 2.3 (iii), it converges to a number  If * 0.μ ≥ * 0,μ =  we obtain the desired result. 

Assume that  Let  be an accumulation point of the sequence {  Without loss of generality, 
we may assume that 

* 0.μ > *z }.kz

* *lim( , ) ( , ).k kk
z zμ μ

→∞
=  

By Lemma 2.1 (i),  is continuously differentiable around Φ * *( , ).z μ  Then 
* *lim ( , ) ( , ),k kk

z zμ μ
→∞

Φ = Φ     * *lim ( , ) ( , ).k kk
z zμ μ

→∞
′ ′Φ = Φ  

Since  by assumption, it follows from Lemma 2.3 (iii) that li* 0kμ μ→ > m 0.kk
λ

→∞
=  By Step 3, the 

steplength :k kλ λ δ=  does not satisfy the line search criterion (7), i.e., 

 ( , (1 ) ) (1 ) .k k k k k k kz zλ σλ μ β σλ μΦ + Δ − > −‖ ‖                                           (15) 

On the one hand, we get from (15) and Lemma 2.3 (iv) that 

  
( , (1 ) ) (1 )

(1 ) ( , ) .
k k k k k k k

k k k

z z

z

λ σλ μ σλ βμ

σλ μ

Φ + Δ − > −

≥ − Φ

‖ ‖

‖ ‖
                                   (16) 

Since k kμ σμΔ = −  by (6),  (16) implies that 

( , ) ( , ) ( , ) .k k k k k k k k
k k

k

z z z zλ μ λ μ μ σ μ
λ

Φ + Δ + Δ − Φ
≥ − Φ

‖ ‖‖ ‖
‖ ‖ 

Taking the limit  in the last inequality and using k →∞ 0,kλ →  we obtain 
*

* * * * * * 2
*

( , ) ( , ) ( , ) .T z
z z zμ μ σ μ

μ

⎛ ⎞Δ
′Φ Φ ≥ − Φ⎜ ⎟⎜ ⎟Δ⎝ ⎠

‖ ‖                                         (17) 

By (6), we have 
*

* * * *
*

( , ) ( , ).
z

z zμ μ
μ

⎛ ⎞Δ
′Φ = −Φ⎜ ⎟⎜ ⎟Δ⎝ ⎠

 

Substituting this relation into (17) and using the fact (0,1),σ ∈  we have 

  * *( , ) 0.z μΦ =‖ ‖                                                                   (18) 

On the other hand, taking the limit k  in (15) and using →∞ 0kλ →  yield 
* * *( , ) 0,z μ βμΦ ≥ >‖ ‖  

which contradicts (18). 
This completes the proof. 
As a consequence of Theorem 3.1, we have the following main global convergence result for Algorithm 

2.1. 
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Theorem 3.2 Suppose that A  has full row rank. Then any accumulation point of the iteration sequence 
{( , )}k kz μ  generated by Algorithm 2.1 is a solution of ( , ) 0.H z μ =  

Proof Let * *( , )z μ  be an accumulation point of the sequence {( , )}.k kz μ  Without loss of generality, we 
may assume that 

* *lim( , ) ( , ).k kk
z zμ μ

→∞
=  

On account of Lemma 2.3 (iv), we obtain 
( , ) .k k kz μ βμΦ ≤‖ ‖                                                                 (19) 

It follows from Lemma 2.1 that Φ  is a continuous function in both z  and .μ  Then taking the limit 
 in (19) and using Theorem 3.1, we have k →∞

* * *( ,0) ( , ) 0.z z μ βμΦ = Φ ≤ =‖ ‖ ‖ ‖ *  

This completes the proof. 
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