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Abstract. This paper first discusses the structure of abstract smoothing splines associated with bounded
linear operators. The minimum-norm property and the representation of the operator smoothing spline are
obtained by introducing a new inner product. Then the smoothing approximate solution with interpolating
errors of operator equation T x=y is studied, and the error estimates are also given.
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Suppose X ,Y are real Hilbert spaces, T is a bounded linear operator from X to Y. There is an important
problem both in theory and application: for a given y €Y, find a approximate solution for the operator
equation Tx = y. Paper [1] summarized the general theory of the projection approximate solution for the

operator equation. [2] established the theory and method of using the operator of abstract spline
interpolations for the approximate solution of the operator equation and indicated that solution of Tx =y

can be approximated by operator interpolation splines S X which satisfy the interpolation conditions

A (Snx) = ﬂ,lx(lﬁ i< n).sometimes we needn’t the solution strictly satisfies the interpolation conditions,

that is there can be interpolating errors, but we need the solution has other optimum properties (e.g.
smoothing rule). How can we construct such solutions? How can we estimate their errors? These are what
we will discuss in this paper.

1. Operator Smoothing Spline and Minimum-Norm Problem
Let X,Y be real Hilbert spaces with inner products and associated norms respectively
<>X <>Y - ||X - ||Y . Denote by ||T||X the norm of the bounded linear operator T: X —Y , and suppose its

range R (T) =Y, the null space N (T) is an m-dimensional subspace of X . Suppose 4, (j :1,2---) are

linearly independent functionals on X with H’%Hx satisfying z;uﬂj i<oo , and /1j (13 ] Sm) are

linearly independent on N (T) . For X, € X , and a positive integer n=m, if s, € X solves the following

optimization problem:
rxnlp{“Tx”i +Z?:1(/1jxo —ftjx)z}, (D

we call s, € X the operator T- smoothing spline® with respect to x, and {/11_ .

For a given yeY , denote by X, the solution of operator equation T x=y. Suppose we have the
values /1jx0 (13 ] < m) , and X, € X is the solution of optimization problem (1 ) satisfying
1%, = %,|| = 0(n—>o0), wecall x, the smoothing approximate solution of Tx =y

Introduce new spaces as
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X' ={x"=(x,e):xe X,e=(e,&, €, )el’}
. 2
A :{y+ :(y’ p) er, p :(pl, Py, pn,...)e | }
Now, consider the operator T*: X" — Y " and linear functionals 4] as follows
T'X" =T"(x,e)=(Tx,e—1AX), where AX=(1,X, 4, X,*+") (2)
A X =4 (xe)=34x+e,, j=12-- (3)

It is clear that the null space N (T*):{X+ =(x,e):xeN(T),e=%4x}, and that A} (j =12,
are linearly independent on X", ,7,]* (1£ j< m) are linearly independenton N (T) .

Let{(pj }f‘ be a basis for N (T) , then ¢ = (¢, 4¢,) (i1=1,2;--,m)is a basis for N (T *) , and we
can know from the independence of the /A (i :1,2,---,m) on N C T ) that the matrix
D= (/11-*(oi+)mxm: (ﬂj(pi )mxm is invertible. Then denote by @; the matrix which obtained by replacing the j-
th column of @ by (¢,,-+,¢, )", let a; =detd, /detd, o] =(a;,% ;) (j=12,---,m), then

T'a; =0, 74 =4a,=9;, 1<i,j<m o)
Lemmal. Any Xxe X" and X" =(X,e) € X" can be uniquely decomposed as
X=X +% =) (AX)3+X, % eN(T),xeN()" )

K =20 +0ge -3 10 =3 (G Axe)a) +X ©
and 2,X = ;X" =0(L< j<m), TX=TxT %" =T "x",

By Lemma 1, we define inner products for X, Y™ and X" respectively as follows
<x,z>l:Zil(ﬁ,,x)(/llz)+<Tx,Tz>Y, X,ze X %)
((y, p), (w, @), =3(y, W), +>.7 Py, (v, p)(W,q)eY” (8)
(x2) =3 " (Ax)A)+(T27), = 3" (FAx+e)EAz+d,)

+%<TX’TZ>Y +Ziil(ei _%ﬂ’lx)(di _%/?’IZ)’ X+’ z e X’ (9
with the corresponding norms denoted by |-| |-

. and | respectively. We know from the Lemma 1 and

Lemma 2 in paper [2] that relative to the inner product (7) X is complete and the linear functionals

A(j=1,2,---)are continuous. Furthermore, we can easily know that Y * is complete relative to the inner
product (8).

Using the Banach’s inverse mapping theorem, we can obtain the following lemma.
Lemma 2. The norms ||{| , ||||1 for X are equivalent.

We know from (2),(8) and (9) that the linear operator T*: X" —Y *is bounded, and ‘T* <1.

Now, we can obtain an important result as below. The proof is a generalization of that in [1] and is thus
omitted.

Theorem 1. X ™ with the inner product (9) is a Hilbert space.
For X, € X, denote

U (%) ={x"=(x,) e X" 1 A/Xx" =24;x, (1< j<n),e; =34 x(j2n+1)} a3
U 0)={x"=(x,8) e X" :A/Xx" =0(L< j<n),e; =3A4,x(] =n+1)} (14)
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then the optimization problem (1) can be described as the minimum-norm problem in space (X", ||):

n 2 . n 2
mind[Tx, + 200, (% —4) = min {7, +307 (e, =52, }

(x.e)eUy (0)

0] 2 m 2
= min T+ (e~ 40 + 2 (B Ax+e) }

(x.e)eUy (0)

= min ||x||2 (15)
(xe)eU; (0)

By introducing new spaces X *, Y*, the optimization problem (1) can be reformulated as a

minimum-norm problem in space X *. This method was inspired by Weinert and Sidhu [4],[5]. But their
method is restricted to the ordinary differential operator spline, and n is fixedly, we explore abstract spaces
and abstract operators. In order to get the smoothing spline sequence and the smoothing approximate
solution sequence to the operator equation, associated norms and spline projection methods have to be
adapted to the arbitrariness of n. All above lead to the fact that our work (sectionl and 2) is essentially
different to the work in papers [4][5].

2. Solve Operator Smoothing Spline
Lemma 3. Assume that h; is the representer in (X,<->l) of the functional 4;, let

h,1ih ) 1<j<
hj+=(gijj)={(l 2 J) J=m

(Zhj,wj), j>2m+1 (16)

where w; =(0,-+-,0, 4, ;0. 4,50 1+ A0, 4,50, ) (2 m+1), then

X =(47,x7), X eXT, j=12

Lemma 3 shows that h' is the representer of 4", so A" is continuous with respect to the inner (9) in
space X

Theorem 2. If x" =(x,e)eU;(0)", and e;=34,X(j=n+1Ln>m), then x™ can be represented
linearly by h',h,,---,h .

Proof : Forany z* =(z,d) € X " andevery n>m+1, we have from (16) that

(W2 )=z +3"  (w-4h)d;-342), m+l<i<n (17)

when z* €U 7(0), since d; =54,z (j=n+1), 4 :z* =0(@1<i<n), then for any w; =(j=n+1),
we have ZT:m-l(Wij —A;h(d; -%2,2)=0, and <hi+, z+> =A7z"=0(m+1<i<n). Inasimilar way,

we can know that <hi*, z*> =0(L<i<m) holdforany z* €U (0)and w; =(j >n+1). Then let

h*=(h,W) (I<i<m), h*=(2h,W) (m+1<i<n) (18)
W, =(%ﬂ'jhi"“'%ﬂ'nhi’Wi,n+1lv_vi,n+2"“)’ I<i<m
W, :(O)""0’/1m+1hi""’ﬂf|—1hi'1+ﬂfuhiJ’i+1hi""’ﬂnhi’V_Vi,n+1'V_Vi,n+2"")’ (m+1<i<n)

where W, (1<i<n, j>n+1) arearbitrary, thus,when z* eU (0), we have
(h',z)=0 (<i<n) .
On the contrary , if z" =(z,d) satisfies <ﬁi*,z+>:0(1£i£n) , then there must be

<ﬁ* z*>:0(1£ i<n), which implies, using Lemma 3 , 4"z =0(1<i<n). And similar to (17), we
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know that 0= <ﬁi+, z+> = Zinﬂ(v_vij —A;h)(d; -%12,2) =0 holds for any W,(j>n+1) . Setting
W, =Ah+d,—$4,z(j2n+1), gives z‘jflm(olj ~1i1,2) =
then d; =34,;z(j=n+1) , so z" €U (0).
From above we havez* €U (0) & <hi*, z*> =0(@@<i<n) .Itfollows that if we denote
H = Span{h.*,1<i < n}, then
U, (0)=(H,)". (19
We will prove that H" is a closed set. Let 7 =h" —h", thatis h* =h*+3", where h' is defined

2
. Denote

as (16). Using (9), (16) and (18), we have |

=Span{h*,1<i<n}, E' =Span{g ,1<i<n}
thus H;" can be expressed as the directsum : H = H” @ E;". Noticing that §; = (05, )
|2

gi :(O"”’O! V_Vi,n+l_ﬂ’n+lgiiv_vi,n+2 _ﬂ’ngi"”) ) ‘gl =ZT n+l( —4 g ) ’ and  the

arbitrariness of W, we can regard E, as the space 1, so E, is also a complete space. Since H_ is a

finite dimensional subspace, we know that I—_I+ is a closed set of X ™.

Now, it can be know from (19) that U’ (0)" =(H/)""=H’ , which implies that when
X" =(x,e)eU (0)", x* must be a linear combination of h",---, hn*. We know from (16),(18) that
when 1<i<n , then h’=(g,,w)eU (0)" and w;=212,0,(j=n+1) .Consequently, if
X" =(x,e)eU(0)" satisfying e; =3 A4;X(j =n+1) , then X" can be expressed by a linear combination
of ﬁ;,...,ﬁ;

Theorem 3. The operator T -smoothing spline s = (s, ,e ") defined by (1) or (15) is the projection of

+.
n,..

sp€)=>. ch' (20)

Proof : Forany X" eU’ (X ),since u- (0) is a closed subspace, by the projection theorem, there exists

n!>n

any element in U (x,)onto U " (0)*, and can be expressed as a linear combination of h*,---,

aunique X" eU, (0)satisfies

o+

X

Gt

—X"[= inf

7*eU; (0)

where X" —X"eU (0)* . It is clear that X

+ o+ +

X" and X"—z" belong to U,(X,) » and
Ui (%)=X"-U;(0), these imply, from (15), that X" —X" must be the operator T- smoothing spline
,e) Wlthe =34;8,(j=n+1). Now, by Theorem 2, s, =(s,,e
combination of h',---,h" . il

From (20) and (4), we know

e: :%z (Ah)+z —m+ 1CI\Ni’S _an Cihi -i_ZZin=m+lCihi ’

*

If e, is denoted ase, = (€/,,€.,, "

s, =(s ) can be expressed by a linear

n!>n

-+), then from (4) we have

’I’lj’
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e =1> " c(4h)=%c, 1<j<m
e =C;+3> . C(A40)=c,+1Y " c(Zh)+D"  c(4h)m+l<j<n (21

%Zin:lci (4;9:) :%Z:ilci (ijhi)+zirim+lci (4;h), j1=n+1
Since s =(s,,€,) €U (X,) then e:j =A% —34;8,(1< j <n), and by (20)(21), we have

€

i+ C(A4h) =A%, 1<j<m

i+ G4 =A% =" ¢ (4h), m+1< j<n
Substituting ¢, (1< 1 < n)determined by (22) into (20), we obtain the operator T-smoothing splines; . It

(22

follows from %/11.3” +e’;j = A; Xy, (21) and (22) that the interpolation errors of s, and X, with respect to
A< j<n)are
n .
A% =48, =Ci =A% == G(4h), 1< j<m

AXo—=4;8,=¢C;, m+1>]=n

(23)

3. Smoothing Approximate Solution and Error Estimation for Operator
Equation

Let {ﬁf} be the orthonormal system in X obtained by orthogonalizing {h;} with respect to inner
product (9), we have

hi=h'=(h,2ih)(1<j<m), h=>"" gh' B, #0(j=m+1) (24)
where /3 are constants.

Denote X, =Span{h,,---,h,} = (X,(--);) » by Hahn-Banach theorem, there exist |, € X ,

(I,hp), =4l =6;,i,j=12, (25)
let I =(l,,2 A1) (i=1,2.---) , then
A0 = +3 4L =41 =05, 1,j=12,-- (26)
which implies, fori, j>m+1,
(T, T h). =17, hy) =6 27
Denote X =Span{h/,---,h-}(n=1,2,---), Y."=Span{T"h, ,,---,T"h-}(n>m+1)
Let P,: X" —> X, ,Q,:Y" =Y, are projection operators:
P x* =Z?:1 A7, xHhT, xTe X' (28)
QY =2 T Ly)Th, y ey (29)

Now, proceeding in a fashion analogous to that used in [2], the following theorem is readily established.
Theorem 4. The operator sequences {P,},{Q,} are uniformly bounded, namely there exists a constant
C >0, suchthat |R,[<C,||Q,[<C, and

lim =0 (30)

n—oo

Let T." is the restriction of T"to X, then T "is a bounded linear operator from X to Y.".

+ +
P X" —X

Lemma4. Suppose Y' €Y", and x" € X" isasolution for T*x" =y™ , then all solutions for
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X =Q,y", X;eX",n>2m+1 (3D
are given by

Xi=X4 0 xOh =KT (TO y Ly (32)
where X" is any elementin N(T").
Proof : Using (9), (27) gives
T =2 XTI =D (T TXOTh =Qy".
Conversely, let X, =Zzzlakh|: e X, (n>m+1) be a solution for the equation (31), denote
= Span{h’

we know T* has a bounded inverse (T,”)™. let X" = x; —Z:Llakhk+ e X", then we know from (31) that

K=Yy =) Ty =T 00N,

--h'}, itisclear that T.": X — Y. is bijective. By Banach inverse operator theorem,

m+1r

and that
+ m + n + oyt\ht
X ZZkzlakhk +Zj:m+1<|' X >hj .
Lemma 5. For every y" €Y™, denote X, = ZE:m+1<T*I;, y*>*h;, then equation T'X" =y" has a

and all solutions of the equation are X' +X,

solution X" satisfying
(Vx5 eN(T)).

Proof : Recalling that R(T)=Y , we know R(T")=Y", then for every y" eY" , there exists
X" e X*suchthat T"x" =y". Let

=x" =Y XD (33)
then T'X" =T'x"=y" . From (9), we have <T+I:,y+>*:<I§,X+>(k2m+l) ., thus

% — %

n

X —x —Z::Zl(l*,x*mk+ —X". Furthermore we know from (28) and (30) that
i

Theorem 5. For every y" =(y,d)eY" and any given real numbers r,(L<k <m), the unique
solution of T*X" = y* satisfying 4’ X" =r, (1<k <m) is

-y [Zﬂ.,r LY A (Zukh)(rk d,)+(Th,y), +d Hiﬂk,-h; +iﬂkjh;+irkh;

j=m+1| i=1 i=m+1

Proof : By taking h; = h:,l,+ h+ in (26), we know that Lemma 4 and Theorem 5 hold for all I." and h’

replaced by hf. By Theorem 5, suppose the solution of T"x" =y~
X=X 4%, X=. ch

and (I, % )=4X" =0(1<k<m). From the continuity

where X'

g+t ot
a — X

satisfies

of 4, we know 4, X" =0(1<k <m), so the solution of T*X" =y" which satisfies 4, X" =r, (1<k <m)
is unique, and it is given by

SEDIRC S DES DI A (34)

By (33) and the assumption that ﬁ; (j=12,---)is a complete system, we can get
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)’er Zj m+1<h+’x >h+ _z(}(}:mﬂ(Zij:lﬂi]<hi+’X+>)ﬁ;r
= ZT:mﬂ[Zinllﬂijri —’_Zij:m-#lﬁijd’]r’)(Jr>]ﬁ;r 35)
Thenby T'x" =(Tx,e—4+A4x)=(y,d), wehave Tx=y,e=21Ax+d, and it follows from
(3),(9) and (16) that , for i > m-+1, we have
(h X"y = le(,ajhi)rj +3(T(2h), TX)y
+ZL(—%/1] (2hi))(/1jx+dj —%ﬂjX)Jr(%/lIXeri -3 A4X)
= ern:l(ﬂ’jhi)(rj _dj)+<Thi1 Yy +d,

Substituting it into (34) and (35), we complete our proof. |l
By the similar kind of argument used in [2], we have the following two lemmas.

Lemma 6. There exists a constant g >0 , such that for any x; € X, , if X" e X" satisfying
“Il» where X =zk m+1<|+,X he .

Lemma 7. For any xe X , let X" =(x,3Ax)e X", then the smoothing spline satisfying

A's, = AX(A<i<n) isgiven by
si=(s,e)=>. ( i (h!, xHh! (36)

Proof : From (20), we knows’ :z LGhy = Zj:l<hj (SO Thus, if Aisp=A4,x (I<i<n), we

have

hisH=>" g(s)=>" g0 %)= %) (37)

so (36) is true. |
According to (36) we can defined a mapping S, :X — X*, that is S (x)=s'
X" =(x,e)e X", since x" =X" +(0,e —$Ax), then we have from (3),(24) and Lemma 3 that

PURUSIED IR USRS IR WACESYEIUED WD IV A CE 2RI
=S+ S Bie—A0h + DT (e, -4 4, x)h;
= S~nx+ZT:l(ej ~14,%0h (38)
where S x=S X+ Z?:m_,,lzij:lﬂij CERYRIN
Theorem 6. Forany X" =(X,e) € X", we have
x*—S~nx—ZT:l(ej.—%/Ijx)h+ X" =S X— Z (Ax— < >)h+
Proof : Itis clear from (38) that Snx+ Zj:l(ej —3A;x)h7 is the orthogonal projection of X" onto X .
x*—§nx—ZT:1(ej—%/1jx)hy <
Forany z, € X, ,wehave z, =P,z . Thus using Lemma 6 and ‘
=x" —ern:l<l*j,x*>hj+
+x =z —ZT:1<IJ.+,X>hj+
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=q‘T+(x+—z;—z:‘l<l;,x>h;) Ty A S (P
<(@+)x =X (17 x)h -2
which implies
X" = p,x"|<@+q) inf x*—ern:l<lj*,x>hj*—Zn+ .

Therefore when Z, is the orthogonal projection of X" —ZT:1<IJ.*,X*>hj+ onto X (denote by X*) ,

the infimum of the right side of above inequality is attained. It is clear that Z :Z?_n+1<ﬁj : x*>ﬁj*, and by

(38), we have

X+ _ pn X+

<(1+q)
=(1+q)

=(1+q) x*—S~nx+ern:l(/ljx—<lj*,x*>)hj+ .
Theorem 7. Assume that x, is the solution of the equation Ts=y, s, is the operator T -

D MR LTS IR (R LA

smoothing spline determined by (1) with respect to the X,, then

S, — XOH — 0 (n— ). In other words,
S, is the smoothing approximate solution of Tx =Y.
Proof : From (36), we know that the T -smoothing spline S, = (sn,e:)determined by (1) or (15) is the

projection onto X[ of X; :(xo,%ﬂxo) and (s, — X,

—0(n—o0). It is clear thats is just the T -

smoothing spline with respect to x,, and s, € U, (X,), thus

Alsy =348, +e =A% (1< j<n), e; =345 (j=n+1).

nj

It follows from — 0(n — o0) that

s, — X,
= ziril[%ﬂi (s, —Xo) + (& —54i%)] 24 %HT (s, — XO)H\Z(
w3 [ —2Ax) 24 (s,-%)]

=4[5, ~Tx, | + 37 (A% = 45,07 >0, n >0,

+ o+
Sy =X

From (7), we have
2 2 m 2
30 =%l =[Ts0 =Txo[l, + 2., (4%) =0, n—>eo

In light of Lemma 2, we have |s, - X0||X —->0(n—>x). N

We can compute S, = (Sn,e;) by (20)—(22), and the interpolating errors 1,X, —4;s, by (23). More
exactly, the ¢, in (20)—(23) should be denoted by c, (1<i<n). As in [6], we can also establish a
recursive algorithm fors; .

If we letX" =(x,24x),y" =(y,0), thenX is a solution of Ts=y if and only if X" is a solution of
T*X" =y". It is clear that the results for T*x" = y* are all still hold for T*X" = y*, and in this case the
results are more simple. For example, corresponding to Theorem 6, for T*X" = y*, we can know that the

solution X =(X,21X), the best smoothing approximate solution s, = §nx and the projection solution
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P X" satisfy

A4 -
X" =S, X

o+ o+
X" =P X

<(@+q)[%* —§nx—%2T=1<T|j,y>Yh;

<

wherey =T X.
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