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Abstract. In this paper, we prove that under some conditions, A two-dimension vectorial Sturm-Liouville 
Problem  can only have finitely many eigenvalues of multiplicity two. Using this result, we imply that the 
spectral of two Sturm-Liouville Problem of dimension one , or two string equation, have finitely many 
elements in common. And then we find a bound  depending on ,such that   the eigenvalues of the 
vectorial Sturm-Liouville Problem larger than  are all simple. 
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1. Introduction  
In this paper, we study the following   two-dimension vectorial  Sturm-Liouville  equation 

''( ) ( ( )) ( ) 0, [0,1]Z x I Q x Z x xλ+ − = ∈                                            (1.1) 

with boundary  conditions 
0)1(')0(' == ZZ                                                            (1.2) 

where I  is the two-by-two identity matrix, )(xZ  is  two-dimension vectorial function, 1
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 is a 

continuous two-by-two symmetric matrix-valued function define on [0,1],that is )(),(),( 21 xrxpxp  are 
continuous  functions on [0,1]. 

It was well known that the spectrum of the following one-dimension Sturm-Liouville  problem (1.3)(1.4) 
are all  eigenvalues ([1][2][3][4][5]),and these eigenvalues are all simple. 

''( ) ( ( )) ( ) 0, [0,1]y x q x y x xλ+ − = ∈                                          (1.3) 

                              0)1(')0(' == yy                                                            (1.4) 

Thus two-dimension vectorial Sturm-Liouville  problem (1.1)(1.2)may have the eigenvalues of multiplity 
two. The eigenvalues of two-dimension vectorial Sturm-Liouville  problem (1.1)(1.2) can be indexed as 
follows([1][6][7]) 

≤≤≤≤ nλλλ 21                                                         (1.5) 

But the numbers of eigenvalues of multiplity two of (1.1)(1.2)are not well understood. Our purpose of 
this paper is to investigate  the numbers of eigenvalues of multiplity two of  (1.1)(1.2) under some conditions. 

The organization of this paper is as follows. Following this Introduction, we give in section 2 the 
numbers of eigenvalues of  multiplicity two in Theorem 2.1:   

Suppose 1
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  in (1.1), if 0)(
1

0
≠∫ dxxr , then two-dimension vectorial Sturm-Liouville 

Problem (1.1)(1.2) can only  have finitely many eigenvalues of multiplicity two. And then we find a 
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bound

QM  depending on )( xQ , such that the eigenvalues of the two-dimension vectorial Sturm-Liouville 
Problem  larger than

QM  are all simple in Theorem 2.2:  Suppose 
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if nλ  is the eigenvalue of (1.1)(1.2) which satisfies the condition
Qn M>λ ,then nλ  is simple. 

Finally, in section 3, we apply  Theorem 2.1 to study the intersection of  two potential equation ,or to  
two string equation. We obtain Theorem 3.1 as follows: Let  )(qσ  be the spectrum of Sturm-Liouville  

problem(1.3)(1.4),If  then  and  only have finitely many elements in 

common. 
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And Theorem 3.2 : Suppose )(1 xρ  and )(2 xρ  are two real-value continuous functions on [0,1],if )(1 xρ  

and )(2 xρ  satisfy the following two conditions, ∫∫ =
1
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1 )()( dxxdxx ρρ ,  then )( 1ρσ  and )( 2ρσ  only have finitely many  elements  in common. 

2. Numbers of eigenvalues with Multiplicity  two  
To study eigenvalue problems of (1.1)(1.2), we first consider the following  Matrix diffential 

equation([1]) 
''( ) ( ( )) ( ) 0, [0,1]Y x I Q x Y x xλ+ − = ∈                                               (2.1) 

with initial   conditions 
0)0(',)0( == YIY                                                               (2.2) 

where  is an two-by-two matrix-valued function. )(xY
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 be the solution of the initial valued  problem (2.1)(2.2), then 
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*λ  is a simple eigenvalue of (1.1)(1.2) and ),(1 λxy is the 

corresponding eigenfunction, then 12
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,and if *λ  is an eigenvalue of (1.1)(1.2) of 

multiplicity two ,then  ),1(' *λY    is the zero matrix. The following asymptotic formula of ),( λxY ([1][6]) 
will used later: for 0>λ , 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+
=

)1(cos)1(

)1()1(cos
),(

λ
λ

λ

λλ
λ

λ
OxO

OOx
xY                                       (2.3) 

The following Lemma shall be used to prove the main result of this paper. 

Lemma 2.1    
If *λ  is an eigenvalue of (1.1)(1.2) of multiplicity  two, ,
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Proof : Because ),(1 λxy , ),(2 λxy   satisfy equation (1.1), we  have 
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0)()()())(()('' 21111*11 =+−+ xyxrxyxpxy λ                                         (2.5) 
0)()()())(()('' 22121*12 =+−+ xyxrxyxpxy λ                                         (2.6) 

By (2.5) and (2.6) we have 
))()()()()(()()('')('')( 2112221111121112 xyxyxyxyxrxyxyxyxy −=−  

that is 

))()()()()(())()(')(')(( 2112221111121112 xyxyxyxyxrxyxyxyxy
dx
d

−=−                 (2.7)  

Integrating (2.7) from 0=x to 1=x and using the boundary  condition  0)1(')0(' == ijij yy ,we 
obtain (2.4). 

Lemma 2.2(Riemann-lebesgue Lemma [8])  
If be a Riemann-integrable function defined on interval , then and f ],[ ba ∫ =
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Now we give the main result of this paper. 

Theorem 2.1 
If , then two-dimension vectorial Sturm-Liouville Problem (1.1)(1.2) can only  have finitely 

many eigenvalues of multiplicity two. 
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Proof : On the contrary, suppose there are infinitely many eigenvalues
knλ  which have multiplicity two. 

Denote the solution of (2.1) for 
knλλ =  by 2
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We let ∞→
knλ  in (2.8),and by Lemma 2.2( Riemann-Lebesgue Lemma([8])) we have 

02cos)(lim)(
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                                            (2.9) 

This is a contradition. Therefor, if 
1

0
( ) 0r x dx ≠∫ , two-dimension vectorial  Sturm-Liouville Problem 

(1.1)(1.2) can only have finitely many eigenvalues of multiplicity two.

The sequence of eigenvalues of (1.1)(1.2) can be indexed as follows 
≤≤≤≤ nλλλ 21  

By Theorem2.1, there exists a constant  such that for all eigenvalues satisfying QM Qn M>λ are simple. 

Now we shall  try to find a bound estimate of the constant . QM
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 Let 2
1,)( == jiijaA be a two-by-two matrix. Define the maximum norm of A as follows: 

}2,1|:sup{| ≤≤= jiaA ij  

If A  and B  are two two-by-two matrices, then we have 
||||||||2|||| BAAB ≤                                                             (2.10) 
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xY   be the solution of the initial valued  problem(2.1)(2.2),then ),( λxY  

satisfies the following  integral equation([7]) 
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The following Lemma shall be used to prove the main result of the  paper. 

Lemma 2.3.(Gronwall  inequality([9])) s,

Let denote an interval of the real line of the form I ),[ ∞a or  or  with . Let ],[ ba ),[ ba ba < u,,βα be 
real-valued functions defined on I . Assume that u,β  are continuous and that the negative part of α  is 
integrable on every closed and bounded subinterval of . I

(a) If β  is non-negative and if usatisfies the integral inequality 
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, if nλ  is the eigenvalue (1.1)(1.2) which satisfies the condition
Qn M>λ , then nλ  is simple. 
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where ),(det),(cos),( nnnn xGxxTraceGxh λλλλ += . 

By (2.14)and (2.15) we have 
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Because of (2.10)and (2.11) we obtain 
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By Lemmma 2.3( Gronwall's inequality([9]) )we obtain 
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Using  (2.12)(1.13) and |,2 *Qn >λ  we have, for 2,1 ≤≤ ji , 
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This is a contradiction. Therefor, if nλ  is the eigenvalue (1.1)(1.2) which satisfies the condition 
Qn M>λ , 

then nλ  is simple. 
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3. The intersection of the spectra of two potential equations  
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In this section,we will apply Theorem 2.1 to study the intersection of the spectra of two potential 
equations of the form(1.3). Recall  that for (1.3) with potential function  and boundary condition 
(1.4),

)(xq
)(qσ  is used to denote its spectrum,i.e.,the set of all eigenvalues of (1.3)(1.4), )(Qσ  is used to denote  

spectrum of (1.1)(1.2),i.e.,the set of all eigenvalues of (1.1)(1.2).  
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where θ is a constant. 

Theorem 3.1 
Suppose  and  are two real-value continuous functions on ,if  )(1 xq )(2 xq ]1,0[

                                                        (3.2) ,)()(
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0 2
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0 1 ∫∫ ≠ dxxqdxxq

then  and  only have finitely many elements in common. )( 1qσ )( 2qσ

Proof : If )()( xQxQ θ=  in equation (1.1), then θθ cossin)()( 12 qqxr −= ,where θ is a constant. 
We choose θ so that 0cossin ≠θθ . First, we will prove the following equation 

)()()( 21 qqQ σσσ θ ∪=                                                          (3.3) 

On the one hand, suppose )()( 210 qq σσλ ∪∈ ,then )( 10 qσλ ∈  or )( 20 qσλ ∈ . We suppose 

)( 10 qσλ ∈ , 1y  is the corresponding eigenfunction, then 1y  satisfies the following equation 

0)1(')0(',0)('' 1 ===−+ yyyqy λ                                               (3.4) 
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Then 

))()(( 21 qqQ σσσ θ ∪⊂                                                            (3.6) 

By (3.5)(3.6) we obtain (3.3). 

By (3.2) we have  ,By theorem2.1 we obtain two-dimension 

vectorial Sturm-Liouville problem (1.1)(1.2) for 
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)()( xQxQ θ=  only have finitely many eigenvalues of 
multiplicity two. Then )( θσ Q have finitely many elements in common. Because the eigenvalues of(1.3)(1.4) 
are all simple , by (3.3) ,we obtain  is a finite set. )()( 21 qq σσ ∩

Therefor if ,)()(
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0 2
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0 1 ∫∫ ≠ dxxqdxxq  then )( 1qσ  and )( 2qσ  only have finitely many elements in 

common. 
Finally we apply Theorem 3.1 to study the  intersection of the spectra of two string equations. 
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Let )(ρσ  be the spectrum of the following string equation with density function )(xρ ,i.e., the set of all 
eigenvalues of (3.7) 

0)1(')0(',0)()()('' ===+ yyxyxxy μρ                                        (3.7) 

It was well known that the eigenvalues of (3.7) are all simple. Apply apply Theorem 3.1  we obtain the 
following result. 

Theorem 3.2 
Suppose  and )(1 xρ )(2 xρ  are two real-value continuous functions on [0,1],if  and )(1 xρ )(2 xρ  satisfy 
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That is the equation (3.7) is transformed to the form of equation(1.3). 
By the method of changing variables, we find that 
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Therefor, if )(1 xρ and )(2 xρ  satisfy (3.8)(3.9),then 
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By Theorem 3.1 we have )( 1ρσ  and )( 2ρσ  only have finitely many elements in common. 
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