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Abstract. In this work, the homotopy perturbation method, a powerful technique, is applied to obtain an 

unknown time-dependent function in a semi-linear parabolic equation with given initial and boundary 

conditions. This kind of problem plays a very important role in many branches of science and engineering. 

Using the homotopy perturbation method a rapid convergent sequence can be constructed which tends to the 

exact solution of the problem. Some examples are presented to illustrate the strength of the method. 
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1. Introduction  

Most of physical and engineering problems are nonlinear and in most cases it is difficult to solve them, 

especially analytically. A number of analytical methods are available in the literature for the investigation of 

these problems, such as Adomian decomposition method [1, 2],  the  -expansion method [3], the homotopy 

analysis method [4-6], the variational iteration method [7-10] and the homotopy perturbation method (HPM) 

[11-13]. The HPM was proposed by Ji-Huan He in 1999. The essential idea of this method is to introduce a 

homotopy parameter, say m , which takes values from 0 to 1. When 0m  , the systems of equations usually 

reduced to a sufficiently simplified form, which normally admits a rather simple solution. As m  is gradually 

increased to 1, the system goes through a sequence of deformations, the solution for each of which is close to 

that at the previous stage of deformation. Eventually at 1m  , the systems takes the original form of the 

equation and the final stage of deformation gives the desired solution. 

One of the most considerable features of the HPM is that usually just few perturbation terms are 

sufficient for obtaining a reasonably accurate solution. 

The HPM is an effective solution method for a broad class of problems. This technique was applied to 

nonlinear oscillators with discontinuities [14], nonlinear wave equations [15], nonlinear boundary value 

problems [16], a nonlinear convection- radiative cooling equation, a nonlinear heat equation [17], limit cycle 

and bifurcation of nonlinear problems [18, 19], nonlinear fractional partial differential equations [20], 

inverse heat conduction problem [21] and some other subjects [22-26]. 

In this work, we consider the inverse problem of finding a pair of function ( , )T p  in the following semi-

linear parabolic equation: 

    max, , ( ) ( , ) ( , ); , 0 ,
T

X t T X t p t T X t X t X t t
t




      


                   (1) 

with initial and boundary conditions: 

                                                                ( ,0) ( ); ,T X f X X                                                         (2) 

                                                    
max( , ) ( , ); , 0 ,T X t h X t X t t                                             (3) 

and an additional  condition as an over specification at a point in the spatial domain in the following form: 

                                                  
max0 0( , ) ( ); , 0 ,T X t E t X t t                                                      (4) 

where   is Laplace operator,  maxt  is final time, [0,1]d   is spatial domain of the problem for 1,2,3d  ,

1( , , )dX x x ,    is the boundary of    and , ,f h  and E  are known functions. 

The existence, uniqueness and continuous dependence of the solution upon the data for this problem are 

demonstrated in [27-31].  

These kinds of problems have many important applications in heat transfer, thermoelasticity, control 

theory and chemical diffusion. Equation (1) can be used to describe a heat transfer process with a source 

parameter ( )p t  and (4) to represent the temperature ( , )T X t  at a specific point 
0X   in the spatial domain at 
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any time. 

In [32, 33] the finite difference techniques are used to approximate the solution of this problem. The 

Adomian decomposition method for the problem (1)-(4) is proposed in [34]. Authors of [35, 36] applied the 

variational iteration method to obtain the analytical solution for this problem. Also Sinc-collocation method 

has been used in [37] for solving the one dimensional parabolic inverse problem with a source control 

parameter. 

In this paper, we use the HPM to derive an analytical solution for the problem (1)-(4).The organization 

of the paper is as follows: In Section 2, the homotopy perturbation method is presented. Section 3 is devoted 

to some examples. Conclusion is finally discussed in Section 4. 

2. Homotopy perturbation method (HPM) 

To clarify the basic ideas of HPM, consider the following nonlinear differential equation: 

                                                                 ( ) ( ) 0; ,A T f r r                                                      (5)                                        

subject to the boundary condition:                                                                

( , ) 0; ,
T

B T r
n


 


                                                       (6) 

where ( , )T T X t  is the dependent variable to be solved, A  is a general differential operator, B  is a 

boundary operator and ( )f r  is a known analytic function. 

The operator A  can be divided into two parts, which are L  and N , where L  is a linear and N  is a 

nonlinear operator. Equation (5) can be, therefore, written as: 

                                                             ( ) ( ) ( ) 0.L T N T f r                                                                  (7) 

By using homotopy technique, one can construct a homotopy 

                                                           ( , ) : [0,1]v r m                                                                        (8) 

which satisfies 

                                   
0( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0,H v m m L v L T m A v f r                                               (9) 

or 

                               
0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0,H v m L v L T mL T m N v f r                                              (10) 

where  0,1m   is an embedding parameter and 
0T  is the initial approximation of equation (5) which 

satisfies the boundary conditions. Clearly, from equations (9) and (10), we have 

                                                           
0( ,0) ( ) ( ) 0,H v L v L T                                                              (11) 

                                                           ( ,1) ( ) ( ) 0.H v A v f r                                                                (12) 

Changing the process of m  from zero to unity is just that of ( , )v r m  changing from  0 ( )T r  to  ( )T r . In 

topology, this is called deformation and also, 
0( ) ( )L v L T  are called homotopic. According to the 

homotopy perturbation method, the parameter m  is considered as a small parameter and the solution of 

equations (11) and (12) can be given as a series in m  in the form [11-13]: 

                                                           
2

0 1 2 ,v T mT m T                                                                 (13) 

and setting 1m   results in the approximate solution of equation (5) as: 

                                                         0 1 2
1

lim .
m

T v T T T


                                                                 (14) 

If we limit the sum to the first 1n   components, we obtain so-called n  order approximate solution of 

equation (1):  

                                                         0 1 .nT T T T                                                                               (15) 

The major advantage of HPM is that the perturbation equation can be freely constructed in many ways 

(therefore is problem dependent) by homotopy in topology and the initial approximation can also freely 

selected. 

For the convergence of the series obtained via HPM, we recall Banach's theorem: 

Theorem. Assume that X  is a Banach space and :N X X  is a nonlinear mapping and suppose that 

                                         , ; || ( ) ( ) || || ||, 0 1.v v X N v N v v v                                                   

Then N  has a unique fixed point. Furthermore, the sequence 

1 ( )n nV N V   
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with an arbitrary choice of 
0V X  converges to the fixed point of N  and 

2

1 0

1

|| || || || .
k

k l j

j l

V V V V 


 

     

The sequence generated by HPM will be regarded as: 

0 0 1 1

0

, ( ), ( ) , 1,2, .
n

n n n i

i

V T V N V N V T i 



     

According to the above theorem, for the nonlinear mapping N  a sufficient condition for the 

convergence of HPM is strictly contraction of N . 

Before applying the HPM to equation (1), we employ two following transformations: 

                                0
( , ) ( , )exp( ( ) ),

t

w X t T X t p s ds                                               (16)       

                               0
( ) exp( ( ) ).

t

r t p s ds                                                             (17) 

Transformation (16) allows us to eliminate the unknown term ( )p t  from equation (1) and to obtain a 

new non-classic partial differential equation which has suitable form to apply the HPM. Now using 

trensformations (16) and (17), we can write (1)-(4) as follows: 

    max, , ( ) ( , ); , 0 ,
w

X t w X t r t X t X t t
t




     


                   (18)  

                                                              ( ,0) ( ); ,w X f X X                                                        (19) 

                                               
max( , ) ( ) ( , ); , 0 ,w X t r t h X t X t t                                         (20) 

                                                 
max0 0( , ) ( ) ( ); , 0 .w X t r t E t X t t                                              (21) 

Assume ( ) 0E t  , then the later is equivalent to: 

                                                                0( , )
( ) .

( )

w X t
r t

E t
                                                                         (22) 

According to HPM, we construct the following homotopy [11-13] 

                             0 0 0( , )
( , ) ( , ) { ( , ) ( , ) ( , )}.

( )

w w X t ww
X t X t m w X t X t X t

t t E t t


 
    

  
                (23) 

The solution of equation (23) is assumed in the form [11-13]:  

                                                     
2 3

0 1 2 3 .w w mw m w m w                                                        (24) 

Substituting (24) into (23) and collecting coefficients of the same power of m  yield:  

0 0 0: 0,
w w

m
t t

 
 

 
                                                                              (25) 

                                                   
1 01

0 0 0: ( , ) ,
ww

m w w X t
t E t

 
   

 
                                                (26) 

                                                   
2 2

1 1 0: ( , ),
w

m w w X t
t E


  


                                                             (27) 

                                                                                                                                                                 (28) 

We let 

0 ( , ) ( ),w X t f X                                                                               (29)  

then all the above linear equations can be easily solved. The solution of (23) can be obtained by putting 

1m   in equation (24) as follows: 

0 1 2 .w w w w                                                                        (30) 

Now from (16), we compute: 

( , )
( , ) ,

( )

w X t
T X t

r t
                                                                  (31) 

and from (17), we obtain: 

( )
( ) ,

( )

r t
p t

r t


                                                                        (32) 
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where ( )r t  is given by (22). 

The numerical results in Section 3 indicate that the proposed scheme is efficient.  

3.    Numerical examples 

In this section, we present some examples to show the high accuracy of HPM for solving the inverse 

problem (1)-(4). 

Example 1. Consider the following problem [35, 39, 40, 41, 42]:  

      

2 2 2( ) ( ( 1) )exp( )(cos( ) sin( )); 0 1, 0 1,
T

T p t T t t x x x t
t

  


           


             (33) 

2

2

2

( ,0) cos( ) sin( ); 0 1,

(0, ) exp( ); 0 1,

(1, ) exp( ); 0 1,

(0.25, ) 2 exp( ); 0 1.

T x x x x

T t t t

T t t t

T t t t

    

   

    

   

 

The exact solution of this problem is: 
2

2

( , ) exp( )(cos( ) sin( )),

( ) 1 .

T x t t x x

P t t

   

 
 

Using the equation (26)-(29), we find 

0

3
2

1

3
2 2

2

( , ) ( ) cos( ) sin( ),

( , ) ( )(cos( ) sin( )),
3

( )
3( , ) (cos( ) sin( )),

2

w x t f x x x

t
w x t t t x x

t
t t

w x t x x

 

 

 

  

    

  

 

 

Then from (30), we have the approximate solution in a series form as: 
3

2 2
3

2

3
2

( )
3( , ) (1 ( ) )(cos( ) sin( ))

3 2

exp( )(cos( ) sin( )).
3

t
t t

t
w x t t t x x

t
t t x x

 

 

  

       

    
 

Now from (31) and (32) the exact values of ( , )T x t  and ( )p t  can be obtained. This is the same as 

obtained by Adomian's decomposition method and the variational iteration method [35].  

We can compute n  order approximate solution of equation (33) from (15) as: 
3 3

2 2 2
3

2

( ) ( )
3 3( , ) (1 ( ) )(cos( ) sin( )).

3 2 !

nt t
t t t t

t
w x t t t x x

n
 

     

          

Then from (31) and (32) the   n  order approximate values of ( , )T x t  and ( )p t  can be obtained. 

Tables 1 and 2 show the comparison of absolute error of several methods in approximating  ( ,1)T x and 

( )p t , respectively, for problem 1. As we see the HPM has good accuracy in comparison with the  

other methods of [40, 41, 42]. In HPM we take 
 25.n    

Figures 1 and 2 presents the exact and numerical values of ( ,1)T x and ( )p t  ,respectively. In HPM we 

take 10n   and 25.n    
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Table 1.  Comparison of absolute error of the several techniques in approximating ( ,1)T x  for test 

problem 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.  Comparison of absolute error of the several techniques in approximating ( )p t  for test problem 1. 

t      HPM                    CFDM[40]          SaulyevII [41]          MOL[42] 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

-16

-16

-16

-16

-15

-15

-14

-14

0

2.2204 10

0

2.2204 10

6.6613 10

8.8818 10

2.2204 10

1.7763 10

1.1768 10

1.6431 10

















       

-9

-9

-9

-9

-9

-9

-9

-9

-9

-9

4.1325 10

4.1342 10

4.1374 10

4.1247 10

4.1371 10

4.1256 10

4.1451 10

4.1089 10

4.1589 10

4.0122 10





















           

-3

-3

-3

-3

-3

-3

-3

-3

-3

-3

9.5 10

9.3 10

9.2 10

9.1 10

8.8 10

8.8 10

8.7 10

8.6 10

8.4 10

8.3 10





















          

-5

-5

-4

-4

-4

-5

-4

-4

-3

-4

6.3751 10

5.6986 10

3.3660 10

1.6461 10

4.0586 10

3.9383 10

4.6266 10

4.7802 10

2.1816 10

2.2165 10





















 

 

Example 2. In this example, let us consider the following  problem [33, 35]:           

          

25
( ) ( 5 )exp( )sin( ( 2 )); 0 , 1, 0 1,

16 4

T
T p t T t t x y x y t

t

 
         


                        (34) 

( , ,0) sin( ( 2 )); 0 , 1,
4

(0, , ) exp( )sin( ); 0 1, 0 1,
2

(1, , ) exp( )sin( (1 2 )); 0 1, 0 1,
4

( ,0, ) exp( )sin( ); 0 1, 0 1,
4

( ,1, ) exp( )sin( ( 2)); 0 1, 0 1,
4

(0.4,0.2, ) exp

T x y x y x y

T y t t y y t

T y t t y y t

T x t t x x t

T x t t x x t

T t











   

    

     

    

     

 ( )sin(0.2 ); 0 1.t t  

 

 

x      HPM                    CFDM[40]            SaulyevII [41]          MOL[42] 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

-17

-16

-16

-17

-17

-17

-17

-17

5.5511 10

1.11022 10

0

1.1102 10

5.5511 10

2.7755 10

1.3877 10

1.3877 10

2.7755 10

















       

-14

-14

-15

-15

-14

-15

-14

-15

-14

1.3267 10

3.7192 10

9.6589 10

3.3862 10

1.3156 10

9.4091 10

1.2490 10

3.9829 10

1.4239 10



















           

-3

-3

-3

-3

-3

-3

-3

-3

-3

8.0 10

8.0 10

8.0 10

8.3 10

8.8 10

8.9 10

8.5 10

8.7 10

8.9 10



















          

-7

-8

-8

-7

-7

-7

-7

-7

-7

1.9219 10

5.7795 10

5.0769 10

1.3041 10

1.8180 10

2.0885 10

2.1800 10

2.1716 10

2.1463 10


















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 Fig. 1:  The exact and numerical values of  ( ,1).T x   Fig. 2:  The exact and numerical values of  ( ).p t  

The exact solution of this problem is: 

( , , ) exp( )sin( ( 2 )),
4

( ) 1 5 .

T x y t t x y

P t t


 

 

 

Using the equation (26)-(29), we compute 

0

2

1

2 2

2

( , , ) ( , ) sin( ( 2 )),
4

5
( , , ) sin( ( 2 )),

2 4

5
( )

2( , , ) sin( ( 2 )),
2 4

w x y t f x y x y

w x y t t x y

t

w x y t x y







  

  



 

 

So from (30), we have the approximate solution in a series form as: 

2 2

2 2

5
( )

5 52( , , ) (1 ( ) )sin( ( 2 )) exp( )sin( ( 2 )).
2 2 4 2 4

t

w x y t t x y t x y
 



        
 

One can compute the exact values of  ( , , )T x y t  and ( )p t  from (31) and (32). This result is the same as 

obtained by Adomian's decomposition method [34] and the variational iteration method [35]. 

       The n  order approximate solution of equation (34) can be obtained as follows: 

2 2 2

2

5 5
( ) ( )

5 2 2( , ) (1 ( ) )sin( ( 2 )).
2 2 4

nt t

w x t t x y
n


 

        

Now from (31) and (32) the n  order approximate values of ( , , )T x y t  and ( )p t  can be obtained. 

Tables 3 and 4 show the comparison of absolute error of several methods in approximating  ( , ,1)T x y

and ( )p t , respectively, for problem 2. As we see the HPM has good accuracy in comparison with the other 

methods of [33]. In HPM we take 20.n   

Figures 3, 4 and 5 presents the exact and numerical values of ( , ,1)T x y
 
and ( )p t . In figure 3, we put 

10n   and in figure 4 we take 20.n    
 

 

 

 

 

 

 

 

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

T
(x

,1
)

 

 

Exact

HPM,n=10

HPM,n=25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

t

p
(t

)

 

 

Exact

HPM,n=10

HPM,n=25



Malihe Rostamian et.al. : Application of HPM for determination of an unknown function in a semi-linear parabolic equation 

 

JIC email for contribution: editor@jic.org.uk 

120 

Table 3.  Comparison of absolute error of the several techniques in approximating ( , ,1)T x y  for test 

problem 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.  Comparison of absolute error of the several techniques in approximating ( )p t  for test problem 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3:  The exact and numerical values of  ( , ,1).T x y  

Example 3. In this example, consider [36]:  

0

0.2

0.4

0.6

0.8

1

0
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Fig. 4:  The exact and numerical values of  ( , ,1).T x y     Fig. 5:  The exact and numerical values of  ( ).p t  

The exact solution of this problem is: 
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Thus from (30), we have in series from: 
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Now from equations (31) and (32) the exact values of ( , , , )T x y z t  and ( )p t  can be obtained. This problem bas been 

solved by the variational iteration method in [36].  

4. Conclusion 
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In this paper, the HPM has been successfully employed to obtain an unknown parameter in a semi-linear 

partial differential equation with given initial and boundary conditions. This method constructs the solution 

of the problem as a rapid convergent series solution. Implementation of this method is easy and calculation 

of successive approximations is straightforward. Comparing with some numerical methods [33, 40, 41,42], 

the HPM solves the problem without any discretization of the variables, therefore is free from rounding off 

errors in the computational process. Also, it does not require large computer memory or time. The HPM 

provide the solution in a closed form while the mesh point techniques [33, 40, 41, 42] provide the 

approximation at mesh points only. Using Adomian decomposition method and the variational iteration 

method, the same results will be obtained. The advantage of the proposed method over Adomian 

decomposition method is that homotopy perturbation technique obtain the solution of the problem without 

calculating of Adomian's polynomials. Also computing the successive terms in HPM is much easier than the 

variational iteration method. The results show that the HPM is a powerful mathematical tool for finding the 

analytical solution of inverse problem. 
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