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Abstract. The purpose of this paper is to present a numerical method for finding an approximate solution 

of two-dimensional (2D) nonlinear volterra integral equations. First, we introduce two-dimensional Bernstein 

functions, then present their operational matrices of integration and product. Using this properties and 

collcation points, reduce integral equation to a system of nonlinear algebric equations. Illustrative examples 

have been discussed to demonstrate the validity and applicability of the technique. 
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1. Introduction  

    Mathematical modeling of real-life problems usually results in functional equations, e.g. integral equations, 

integro-differential equations and others. Inparticular, integral and integro-differential equations arise in fluid 

dynamics, biological models and chemical kinetics. Finding the analytical solutions of mentioned equations 

is not possible, and thus numerical methods are required ][1,2,3,4,5 . 

       In recent years, researchers have allocated considerable effort to study of numerical solutions of the two-

dimensional integral and integro-differential equations. Many powerful methods have been proposed. In [6]  

authors, have applied rationalized Haar functions to the solution of the two-dimensional nonlinear integral 

equations.While in [7]  Legendre polynomials have been chosen. In [8]  triangular functions have been used 

by the authors and Block-pulse functions have been chosen by the authors of 10][9, . In [11] the authors, 

have applied the differential transform method to solve two-dimensional volterra integral equations. The 

Euler method have been used in [12]  to approximate the solution of 2D Volterra integral equations 

numerically by authors. 

      Consider the second-kind Volterra integral equation [7]  
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where ),( txU  is the unknown function in 1])[0,1][0,=(  , the functions 21,, kkR  and 3k  are given 

smooth functions and the functions H, G and F are given continuos functions in ),(  , nonlinear in 

U. 

       As shown in [12] , Eq. (1) arise from the transformation of certain Volterra integral equations of the first 

kind. In this paper, the numerical solution of Eq. (1) is computed by using 2D Bernstein polynomials. 

       The basis in the present method is the use operational matrices of the Bernstein polynomials. Using 

Bernstein polynomials expanded in terms of Legendre basis are given the mentioned operational matrices. 

The main reason to use this extension is reduce the computational, In particular operational matrices 

calculation. 

       This paper is organized as follows. In section 2, we introduce 2D Bernstein functions, their propertice 
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and present operational matrices of them. In section 3, how the collocation method can be used to reduce the 

problem to a system of nonlinear equations is explained. Numerical examples are given in section 4 to 

evaluation of our method and comparison with the numerical results obtained by other authors is provided. 

Finally, conclusions are given in section 5.  

 

2. Properties of 2D Bernstein polynomials 

2.1   Definition and function approximation 
Two-dimensional Bernstein functions are defined on   as 

                                    ,...,0,=,...,0,=),()(=),( ,,,,, NjMitBxBtxB NjMiNMji  

here MiB ,  and NjB ,  are the well-known Bernstein functions respectively of degree M and N, which are 

defined on the interval [0, 1] and can be determined with the following formula [13] : 
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2D Bernstein polynomials form a single partition on   as:  
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       Suppose that )(= 2 LX , the inner product in this space is defined by  
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       Let 

 XtxBtxBtxBtxB MNMN }),(,,),(,,),(,),,({ 0000  , 

be the set of 2D Bernstein functions and 

                        }),(,,),(,,),(,,),({= 0000, txBtxBtxBtxBspanX NMMNNM  , 

and ),( txf  be an arbitrary function in X. Since NMX ,  is a finite dimensional vector space, f has a unique 

best approximation NMNM Xf ,,   [7], such that  
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where NhMktxL hk ,0,=,,0,=),,(   are 2D shifted Legendre functions on   [7] and coefficients 

hkc  are obtained by  
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        2D Legendre polynomial ),( txLmn  can be expanded in terms of the Bernstein basis as follows:  
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 We put:  
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The coefficients NhjMikw jihk ,0,=,,,0,=,,,,,   form a 1)(1)(1)(1)(  NMNM  

transformation matrix of base as W. We obtain the coefficients jihkw ,,,  in the following manner. Multiplying 

both sides of Eq. (4) by NnMmtxL nm ,0,=,,0,=),,(  , and integrating the result yields  
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 2D shifted Legendre functions ),( txLmn  are orthogonal with each other as [7] :  
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Substituting Eq. (3) into Eq. (5) we have  
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The integration of multiplication of Bernstein basis functions is as follows 
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We suppose  
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The coefficients NnjMimjinm ,0,=,,,0,=,,,,,   form a 1)(1)(1)(1)(  NMNM  

transformation matrix of base as  . 
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Thus, substituting Eq. (9) into Eq. (3) , the elements of   are determined with the following formula :  
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and 2D shifted Legendre coefficients 32,1,=, qk ql

jmni  are given by [7]  
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2.2    Operational matrices of integration 
The integration of the vector B(x, t) can be approximating obtained as: 
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and   denotes the Kronecher product defind for two arbitrary matrices A and B as [14] 
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where bQ2  and bQ3  are 1)(1)(1)(1)(  NMNM  matrices of the form 

                                                      ,=,= 3322  lblb QWQQWQ  

such that lQ2  and lQ3  are 1)(1)(1)(1)(  NMNM  matrices of the form [7]  
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where I and 0 are identity and zero matrix of order N+1, respctively. 

2.3    The product operational matrix 
Let 
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3. Numerical solution 

In this section, we introduce a numerical method for the solution of nonlinear 2D Volterra integral equations 

of the form (1). 

For this purpose, assume that 
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       By using Eqs. (18)- (20),  Eq. (1) can be written as:  
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13
0

12
0

11
00

txRdzzxFztxk

dytyGytxkdzdyzyHzytxktxU

t

xxt








 (21) 

Using the methods described in the previous section, we approximate the functions in Eq. (21) as:  

                                                        ),,(),( txBDtxU T  (22) 

                                                       ),,(),(1 txBAtxH T  (23) 

                                                       ),,(),(1 txBBtxG T  (24) 

 ),,(),(1 txBCtxF T  (25) 

 ),,(),( txBEtxR b  (26) 

 ),,(),(),,,( 11 zyBKtxBzytxk b

T  (27) 

 ),,(),(),,( 22 tyBKtxBytxk b

T  (28) 

 ),,(),(),,( 33 zxBKtxBztxk b

T  (29) 

where A, B, C and D are 11)1)((  NM  unknown vectors. 

Substituting Eqs. (22)- (29) into Eq. (21), we obtain  

.),(),(),(),(

),(),(),(),(),(),(=),(

0
3

0
2

00
1

txBEdzCzxBzxBKtxB

dyBtyBtyBKtxBdzdyAzyBzyBKtxBtxBD

b

T
t

b

T

T
x

b

TT
xt

b

TT








 (30) 

Using the operational matrices of integration (13)- (15) and the product operational matrix (16), Eq. (30) can 

be written as:  

 

).,(),(
~

),(

),(
~

),(),(
~

),(=),(

33

2211

txBEtxBQCKtxB

txBQBKtxBtxBQAKtxBtxBD

bbb

T

bb

T

bb

TT




 (31) 

Let  

 .
~

=,
~

=,
~

= 333222111 bbbbbb QCKQBKQAK   (32) 

By using (17) to define the vectors 321
ˆ,ˆ,ˆ   and using this approximation in (31) we obtain the 

following system:  

                                                         0.=ˆˆˆ
321 b

T ED   (33) 

Using Eqs. (18)- (20) and (22), Eqs. (23)- (25)  for ),( tx  can be rewritten as:  

                            ),,(=)),(,,( txBAtxBDtxH TT
 (34) 

                            ),,(=)),(,,( txBBtxBDtxG TT
 (35) 

                            .),(=)),(,,( txBCtxBDtxF TT
 (36) 

Collocating of  Eqs. (34)- (36) at 1)(1)(  NM point )...,0,=,...,0,=(),,( NjMitx ji , we have  

 0,=),()),(,,( ji

T

ji

T

ji txBAtxBDtxH   (37) 

 0,=),()),(,,( ji

T

ji

T

ji txBBtxBDtxG   (38) 

 0,=),()),(,,( ji

T

ji

T

ji txBCtxBDtxF   (39) 
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where ix  and jt  are zeros of )(1 xLM   and )(1 tLN  respectively. 

       Eqs. (33) and (37)- (39) form a system of 1)(1)4(  NM  nonlinear equations with the same number 

of unknowns. 

In the Linear case, we have H(y, z, U(y, z)) = U(y, z), G(y, t, U(y, t))= U(y, t), F(x, z, U(x, z))=U (x, z), in 

this case the matrices 21,  and 3  in (32), depend linearly on the unknown vector D. 

        In the general case, the dependence of 21,   and 3  from D is nonlinear. Our numerical  expriments 

have shown that for a large variety of cases the syetem (33), (37)- (39) is solvable and its solution can be 

efficiently approximated by classical iterative methods. 

        In our implementation, we have solved this system using the Matlab function fsolve, which uses 

Newton’s method as the default method. This function has succeeded to obtain an accurate approximate 

solution of the system, even starting with a zero initial approximation. 

 

4. Numerical examples  

In this section, some examples are presented to evaluation of our method. In order to show the error of the 
method we introduce the notation: 

                               ,),(|,),(),(|=),( ,,  txtxUtxUtxe NMNM  

where ),(),,( , txUtxU NM  are the exact solution and the computed solution by the present method, 

respectively. The absolute values of the errors ),(, txe NM  are reported at some points for the examples. 

 

Example 1. Consider the following nonlinear two-dimensional VIE [6, 15] 

.),(,)44(
12

1
),()(=),( 32232

00
 txtxttxxxttxdzdyzyUzytxtxU

xt

 

The exact solution is U(x, t)= x+ t. Table 1 shows the numerical results obtained here and the numerical 
results of [6] and [15] for this example. The exact solution of this equation is obtained with M=N=3. 

 

                                                        Table1: Numerical results for Example 1. 

 

 

Example 2. Consider the following linear 2D Volterra integral equation  

                            ,),(,),(),(=),(
00

  txdzdyzyUtxftxU
xt

 

where 1)(
3

1
=),( 32  tt exextxf . 

(x, t) = (
 

   
 

  ) 

i 

Present method  

for  M=N=1 

Present method  

for  M=N=3 

Method of [6]  

for m=32 

Method of [15] by 

Legendre , N=4 

1 8.0×10
-4 0 3.1×10

-2 9.2×10
-10 

2 9.6×10
-3 0 3.1×10

-2 8.0×10
-10 

3 5.0×10
-3 0 3.1×10

-2 7.0×10
-10 

4 3.7×10
-4 0 3.1×10

-2 5.3× 10
-10 

5 2.6×10
-3

 0 3.1×10
-2 8.0×10

-10 
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The exact solution of this problem is 
textxU 2=),( . We have solved this equation numerically with present 

method and the method of [7] using Legendre basis. Numericall results are shown in Table 2. The absolute 
error function for M =N= 4 is plotted in Fig. 1.  
                                                           
                             Table 2: Numerical results for Example 2. 

(x, t) 

Present method 

for  M=N=4 

Method of [7] 

for  M=N=5 

 
 

 
    

 

 
  2.39×10

-7 
1.96×10

-5 

 
 

 
    

 

 
  4.20×10

-6 
6.07×10

-5 

 
 

 
    

 

 
  1.23×10

-6 
9.42×10

-5 

 
 

  
    

 

  
  4.42×10

-7 
1.28×10

-4 

 
 

  
    

 

  
  1.44×10

-7 
1.50×10

-4 

             3.36×10
-6 

5.29×10
-5 

             9.72×10
-6 

2.27×10
-5 

             1.53×10
-5 

3.42×10
-5 

                 1.98×10
-10 

1.98×10
-4 

                 7.48×10
-10 

1.96×10
-4 

 

 

   

          Fig 1:  Plot of the function ),(, txe NM  with 4== NM  for Example 2. 

Example 3. Consider the following nonlinear 2D Volterra integral equation 

                    ,),(,),()(),(),(=),(
0

2

00
  txdytyUytdydzzyUtxftxU

xxt

 

where 
2332532

3

1

2

1

15

1
=),( txtxtxxttxf  . 
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The exact solution of this problem is 
2=),( txtxU . Table 3 shows the numerical results obtained for this 

example with M=N=1, M=N=2. The absolute error function for M = N= 2 is plotted in Fig. 2. 

 

  
Table 3: Numerical results for Example 3. 

 

 

 

  

   

 

   

 

 

 

 

 

 

 

 

 

 

Fig 2:  Plot of the function ),(, txe NM  with 2== NM  for Example 3. 

5. Conclusion 

  We have introduced a new method for the numerical solution of the form (1), based on expanding the 

solution in terms of 2D Bernstain polynomials. Since the Bernstein polynomials are not orthogonal, we use 

their expanded in terms of Legendre basis. The main reason to use this extention is reduce the computational. 

As the numerical results have shown, in the case of a sufficiently smooth solution, a small number of basis 

functions is enough to obtain high accuracy. We leave the numerical analysis of the present method as future 

work. 
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