ISSN 1746-7659, England, UK
Journal of Information and Computing Science
Vol. 10, No. 3, 2015, pp. 178-188

. ACADEMIC

A \orid Academic Union
>

Numerical solution of two-dimensional nonlinear Volterra
integral equations using Bernstein polynomials

Y. Ordokhani” , R. Javadi
Department of Applied Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran
(Received December 30, 2014, accepted January23, 2015)

Abstract. The purpose of this paper is to present a numerical method for finding an approximate solution
of two-dimensional (2D) nonlinear volterra integral equations. First, we introduce two-dimensional Bernstein
functions, then present their operational matrices of integration and product. Using this properties and
collcation points, reduce integral equation to a system of nonlinear algebric equations. Illustrative examples
have been discussed to demonstrate the validity and applicability of the technique.
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1. Introduction

Mathematical modeling of real-life problems usually results in functional equations, e.g. integral equations,
integro-differential equations and others. Inparticular, integral and integro-differential equations arise in fluid
dynamics, biological models and chemical kinetics. Finding the analytical solutions of mentioned equations
is not possible, and thus numerical methods are required [1,2,3,4,5].

In recent years, researchers have allocated considerable effort to study of numerical solutions of the two-
dimensional integral and integro-differential equations. Many powerful methods have been proposed. In [6]

authors, have applied rationalized Haar functions to the solution of the two-dimensional nonlinear integral
equations.While in [7] Legendre polynomials have been chosen. In [8] triangular functions have been used

by the authors and Block-pulse functions have been chosen by the authors of [9, 10]. In [11] the authors,

have applied the differential transform method to solve two-dimensional volterra integral equations. The
Euler method have been used in [12] to approximate the solution of 2D Volterra integral equations

numerically by authors.
Consider the second-kind Volterra integral equation [7]

Ut = [ [ k(o y, 20 H(y,2U(y, ) dydz + [k, (xt,y) G(y,t,U (y, D) dy

t (1)
+jo K, (x,t,2) F(x,z,U (X, 2))dz + R(x,t), (x,t) €[0,1]x[0,1],

where U (x,t) is the unknown function in Q (Q =[0, 1]x[0, 1]), the functions R, k;, k, and Kk, are given
smooth functions and the functions H, G and F are given continuos functions in €2x (—o0,0), nonlinear in
U.

As shown in [12], Eq. (1) arise from the transformation of certain Volterra integral equations of the first
kind. In this paper, the numerical solution of Eg. (1) is computed by using 2D Bernstein polynomials.

The basis in the present method is the use operational matrices of the Bernstein polynomials. Using
Bernstein polynomials expanded in terms of Legendre basis are given the mentioned operational matrices.
The main reason to use this extension is reduce the computational, In particular operational matrices
calculation.

This paper is organized as follows. In section 2, we introduce 2D Bernstein functions, their propertice
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and present operational matrices of them. In section 3, how the collocation method can be used to reduce the
problem to a system of nonlinear equations is explained. Numerical examples are given in section 4 to
evaluation of our method and comparison with the numerical results obtained by other authors is provided.
Finally, conclusions are given in section 5.

2. Properties of 2D Bernstein polynomials

2.1 Definition and function approximation
Two-dimensional Bernstein functions are defined on Q as

B jm.n (1) =By (X) B; (1), i1=0,...,M, j=0,..,N,
here B; , and B, , are the well-known Bernstein functions respectively of degree M and N, which are
defined on the interval [0, 1] and can be determined with the following formula [13]:

B, v (X) = ('\ﬂx‘(l—x)""“, i=0,.. M,

2D Bernstein polynomials form a single partition on Q as:

iZN: Bijmn(X 1) =1, (x,1) e Q.

i=0 j=0

Suppose that X = L*(Q), the inner product in this space is defined by

CE, g(t) = [ [ F(xg(x.tydxat,

where

and the norm is as:

1 14 1
[t ], = P, Foat)? = ([ 1Ot [P dxdt)?.
Let

{Bgo(X,1),..., By (X, 1), ..., Byo (X, 1),..., Byy (X, 1)} = X,

be the set of 2D Bernstein functions and
Xyun =span{By, (X, t), ..., Boy (X, 1), ..., Byo (X, 1), ..., Byy (X, )},

and f(x,t) be an arbitrary function in X. Since X,,  is a finite dimensional vector space, f has a unique
best approximation f,, € X, | [7], such that

M N M N
ft) = fyn(xt) = FTB(xt) = ZZ fii Bijmn (X )= chkh L (X,1), (2)

i=0j=0 k=0h=0

where L, (X,t),k =0, ..., M, h=0,..., N are 2D shifted Legendre functions on Q [7] and coefficients

C,, are obtained by

(PO 1), L (%, 1))

= . ,

HLkh (X’ t)Hz

2D Legendre polynomial L, (x,t) can be expanded in terms of the Bernstein basis as follows:

kh
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ERCOEDD N R (mj@ By mn (%,1). )

i=0 j=0 I
We put:

M N
Benmn 6 =D > Wi Li(x,t),  k=0,..,M,h=0,..,N. (%)
i=0 j=0
The coefficients w, ., k,1=0,..., M, jyh=0,..,N form a (M +1)(N+1)x(M +1)(N +1)
transformation matrix of base as W. We obtain the coefficients w, ,,; ; in the following manner. Multiplying
both sides of Eq. (4) by L, (x,t), m=0,...,M, n=0, ..., N, and integrating the result yields

M N
[0 B (6 ) Lo (0, dxdt = 3> w7 L (%, 1) Ly (6, Dy et
i=0 j=0

2D shifted Legendre functions L. (X,t) are orthogonal with each other as [7]:

IT

o , i=mand j=n,
IO IO Li; (X, O L, (X, 1) dxdt =3 (2m +1) (2n +1) J _
0, otherwise,
therefore
W pmn = (2M+1)(2n+1) I:_E B (X 1) Ly (X, ) dxdt . ®)

Substituting Eq. (3) into Eq. (5) we have

W, o mn = (2M+1) (20 +1) iz (—1)rirmen [Tj@jﬂfj B nmn (6O B, (X, t)dxdt.

i=0 j=0

The integration of multiplication of Bernstein basis functions is as follows

= I:.EBkvth'N (X't) Bi,j,m,n (X,t) dxdt = (J.:('\l:l J[Tj Xi+k(1_ X)M+m—(i+k) dX)

x (Ll(’:j[nt B (1= )Nl g,
(r+i+11)(ri+ij |
LR

using the following equation,

[[a-trtdt= rieN,

i (M+mJ(N+nJ’
M +m+1)(N+n+1) . .
K+i j+h
therefore
W _ (@m+1)(2n+1) M) N )& (—=1)"Firmen m)(m)(n\(n ©)
Lt T M am+1)(N+n+1) Lk JLh S (M+m)(N+n\ i i JUiNG)
K+i j+h
We suppose
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Lmn(x't):iiAmnlj Bijmn (X 1), m=0,...,M, n=0,..., N. (7

i=0 j=0

The coefficients A ;;, m,i=0,...,M, jyn=0,..., N form a (M +1)(N +1)x(M +1)(N +1)
transformation matrix of base as A.

Substituting Eq. (7) into Eq. (2) we have

:iicmn[\m,n,i,ji i=0,...,M, j=0,...,N. (8)

m=0 n=0
M m+|( J

Considering the following equation [13]

Bi,m (X) -

Bunm(xt)=MZ$iijj(-J( k:lj%hJLSJJ B (6 ). ©)

Thus, substituting Eq (9) into Eq. (3) , the elements of A are determined with the following formula :
min {r,m} min {s,n} o m m nY n M -m N_n
Am’n’r ) ) z ( 1)I+J+m+n [ i J[ i j( -)K -J[ i )( - j, (10)
i=l j=k AN PN r—1i S—]
r jis

I =max{O,m+r—-M}, k =max{O,n+s—N}.

thus

Therefore we get
B(x,t) =W L(x,1), (11)
L(x,t) = AB(x,t). (12)

Each functions k, in L,(QxQ) , k, and k, in L*(Qx[0, 1]) can be expanded in terms of 2D
Bernstein functions respectively as

k(X% t, Y, 2) = B" (x, t) K, B(Y, 2), K,(% t, y) = BT (x,t) K,, B(Y, 1),
Ky(x, t, ) = BT (x, ) Ky, B(X, 2), R(x,t) = E, B(x, t).
Using Egs.(11)- (12) we have
=W K, W), Ky = (W) Ky W),
=W’ K w™), E, = E'A,
where K, K, and K, are block matrices of the form

Ko =L

i,m=0"

q = 11 21 3|
in which
k&™ = kg1 e, 1, M=0,..., M, q=1,2,3,
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and 2D shifted Legendre coefficients ki‘}:m, g=1,2,3 are given by [7]
g _ (Kt Y, 2), L (y, 7)), L (X0 1))
N (P s
g _ (K (66 y) Lo (v, D), Ly (%, 1)
B T T
g _ (ks(X 1 2), L (X, 2)), Ly (X, 1))
S T T

_ (RO, Ly (%, 1))
S O

2.2 Operational matrices of integration
The integration of the vector B(x, t) can be approximating obtained as:

j; [[B(x,t)axdt'=Q, B(xt)  (xDeQ,
where Q,, isthe (M +1)(N +1)x (M +1)(N +1) operational matrix of integration. Using
Egs. (11)- (12)
Qp =WQy A, (13)
here Q, is the operational matrix of 2D shifted Legendre polynomials as follows [7]:
Q) =R ®F,
where P, and P, are the operational matrices of 1D shifted Legendre polynomials as

1 10
1,1
N .
p == : . : B : ’
Y20 0 0 ! 0 1
2M -1 2M -1
0 00 0 1 0
L 2M +1 |
1 1 0 0 |
11 0
13 3
p == . . : B : . ’
22 0O 0 0 - -1 0 1
2N -1 2N -1
0O 00 - 0 -1
L 2N +1 ]
and ® denotes the Kronecher product defind for two arbitrary matrices A and B as [14]
A®B = (g;B).
Analogously, using Egs.(11)- (12), we write
_[OX B(x, t)dx' = Q,, B(x, t), (14)
[[Bx, t')dt' =Qy, B(x, 1), (15)

JIC email for contribution: editor@jic.org.uk



Journal of Information and Computing Science, Vol. 10(2015) No. 3, pp 178-188

where Q,, and Q,, are (M +1)(N +1)x (M +1)(N +1) matrices of the form

Qa =WQyA, Qs =WQyA,
such that Q,, and Q,, are (M +1)(N +1)x (M +1)(N +1) matrices of the form [7]

Il | 0 - 0 0 0
_—IOl-- 0 0 0
NN
Q:_Z'Z B ,
2I2000._| 0 L
2M -1 2M -1
0 00 -
2M +1

where | and 0 are identity and zero matrix of order N+1, respctively.

2.3 The product operational matrix
Let

B(x, )BT (X, )F = FB(x, 1), F=[f,, ..

183

0
0 P, 0 0
0 0 0 P, |
o s oo Fars e 1T

where F is an (M +1)(N +21)x (M +1)(N +1) product operational matrix and can be obtained with

using Egs. (11)- (12) as:
F =WCA,

here C=WTF and C is product operational matrix of 2D shifted legendre functions [7].

(16)

Finally, for an (M +1)(N +1) x(M +1)(N +1) matrix H =[H®"], i, j=0, ..., M in which

]N
imjndmn=0"

HGD = [h
we have

i,j=0,.

. M,

BT (x, t)H B(x, t) = H B(x, 1),

where H isa 1x (M +1)(N +1) vector and using Egs. (11)- (12) is obtained as follows:

H=KA,

here K=WTHW and K isa 1x(M +1)(N +1) vector defind by [7]

K =[Koor -or Kor oor Kinos o

and

Kmn = (2m +1) (2n +l) iiiiwi,r,m a)'j,s,n kijrs’

=0 j=0 r=0 s=0

3. Numerical solution

Kun ]

(17)

In this section, we introduce a numerical method for the solution of nonlinear 2D Volterra integral equations

of the form (1).
For this purpose, assume that

H,(x,t) = H(x,t,U(x,1)),

G, (x,t) = G(x,t,U(x,t)),

F (x,t) = F(x,t,U(x,1)).
By using Egs. (18)- (20), Eq. (1) can be written as:

(18)
(19)
(20)
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Ut = [ [Tkt y, 2) Hy(y 2)dydz + [k, (x4, y) G, (v, 1) dy

: (21)
+j0k3(x,t,z) F.(x,z)dz + R(x,t).
Using the methods described in the previous section, we approximate the functions in Eq. (21) as:
U(x,t) = D"B(x, t), (22)
H,(x,t) = ATB(x, t), (23)
G, (x,t) = B'B(x, 1), (24)
F (x,t) = CTB(x, ), (25)
R(x,t) = E, B(x, 1), (26)
k(X t,y, 2) =B" (x, t) K, B(y, 2), (27)
kK, (X t, y) = BT (x, 1) K,, B(y, ), (28)
Ky(x, t, ) = BT (X, t) Ky, B(X, 2), (29)
where A, B, C and D are (M +1)(N +1) x1 unknown vectors.
Substituting Egs. (22)- (29) into Eq. (21), we obtain
D'B(x,t) = B" (x, t) Ky, jot jox B(y, z) B (y, z)Adydz + BT (x, ) K, jox B(y, t)B" (y, t) Bdy o

+BT (%, 1)K, jot B(x, 2) B (x, 2)Cdz + E, B(x, 1).

Using the operational matrices of integration (13)- (15) and the product operational matrix (16), Eg. (30) can
be written as:

D'B(x, t) = BT (x,t) Ky, AQ, B(X, t)+ BT (X, t) K,, BQ,, B(x, t)

+BT (X, t) K4, CQs B(X, t) + E, B(X, 1). 31
Let
A, =Ky AQy, A, =Ky BQyy, Ay =Ky CQy. (32)
By using (17) to define the vectors f\l, Az, A3 and using this approximation in (31) we obtain the
following system:
D' -A,—A,-A,—E, =0. (33)
Using Egs. (18)- (20) and (22), Egs. (23)- (25) for (X, t) € © can be rewritten as:
H(x, t, D'B(x,t)) = AT B(x, 1), (34)
G(x, t, DTB(x, 1)) = B" B(x, t), (35)
F(x, t, D"B(x, t)) =C" B(x, t). (36)
Collocating of Egs. (34)- (36) at (M +1)(N +1)point (x;,t;), (i=0,.., M, j=0,..., N), we have
H(x,t;, D'B(x,t;))—A"B(x,,t;) =0, (37)
G(x,t;, D'B(x,t;))-B"B(x.t;) =0, (38)
F(x.t;, D'B(x;,t;))—C"B(x;, t;) =0, (39)
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where X; and t; are zeros of L, ;(X) and L, (t) respectively.

Egs. (33) and (37)- (39) form a system of 4(M +1) (N +1) nonlinear equations with the same number
of unknowns.
In the Linear case, we have H(y, z, U(y, 2)) = U(y, z), G(y, t, U(y, t))= U(y, 1), F(x, z, U(X, 2))=U (X, ), in
this case the matrices A;, A, and A, in (32), depend linearly on the unknown vector D.

In the general case, the dependence of A;, A, and A, from D is nonlinear. Our numerical expriments

have shown that for a large variety of cases the syetem (33), (37)- (39) is solvable and its solution can be
efficiently approximated by classical iterative methods.

In our implementation, we have solved this system using the Matlab function fsolve, which uses
Newton’s method as the default method. This function has succeeded to obtain an accurate approximate
solution of the system, even starting with a zero initial approximation.

4. Numerical examples

In this section, some examples are presented to evaluation of our method. In order to show the error of the
method we introduce the notation:

eun (X ) =[UX ) -Uy, (X 1),  (X1)eQ,
where U (x,t),U,,  (x,t) are the exact solution and the computed solution by the present method,

respectively. The absolute values of the errors e, (X, t) are reported at some points for the examples.

Example 1. Consider the following nonlinear two-dimensional VIE [6, 15]
U(x,t)= .[;.[Ox(x+t— y—2)U?(y, z)dydz+x+t—éxt (X* +4x°t +4xt* +1°), (x, 1) e Q.

The exact solution is U(x, t)= x+ t. Table 1 shows the numerical results obtained here and the numerical
results of [6] and [15] for this example. The exact solution of this equation is obtained with M=N=3.

Tablel: Numerical results for Example 1.

(x, 1) = (%% Present method | Present method Method of [6] | Method of [15] by
i for M=N=1 for M=N=3 for m=32 Legendre , N=4
1 8.0x10™ 0 3.1x10% 9.2x10™°
2 9.6x10° 0 3.1x10° 8.0<10™
3 5.0<10° 0 3.1x10° 7.0<10™"°
4 3.7<10"* 0 3.1x107 5.3%10™
5 2.6x10° 0 3.1x10% 8.0x10™

Example 2. Consider the following linear 2D Volterra integral equation
U= fx+[ [[U(y, dydz,  (xDeQ,

where f(x,t) = x%e' —%x3(et -1).
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The exact solution of this problem is U (x, t) = x?e'. We have solved this equation numerically with present

method and the method of [7] using Legendre basis. Numericall results are shown in Table 2. The absolute
error function for M =N= 4 is plotted in Fig. 1.

Table 2: Numerical results for Example 2.

Present method Method of [7]
x1

for M=N=4 for M=N=5

11 7 5

G 2.39x10 1.96x10
11 -6 5

G 7 4.20%10 6.07x10
11 -6 -5

G 3 1.23x10 9.42x10

1 1 7 4

e 18 4.42x10 1.28%10

1 1 7 -4

Gy 33 1.44%10 1.50<10
(0.2, 0.3) 3.36x10° 5.29%107
(0.5, 0.6) 9.72x10° 2.27x10°
(0.5, 0.7) 1.53x107 3.42x10”
(0,001, 0,001) 1.98x10%° 1.98x10™
(0,002, 0.002) 7.48x10™1° 1.96<10"

Fig 1: Plot of the function €,, \ (X, t) with M = N =4 for Example 2.

Example 3. Consider the following nonlinear 2D Volterra integral equation
t eX X
U(x,t) = f(x, t)+j0j0 U2 (y, z)dydz +j0 t-yU(y,tHdy, (x,t)eQ,

where f(x,t)=xt? e — e Ly
15 2 3
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The exact solution of this problem is U (X, t) = xt®. Table 3 shows the numerical results obtained for this

example with M=N=1, M=N=2. The absolute error function for M = N= 2 is plotted in Fig. 2.

Table 3: Numerical results for Example 3.

(x, ) Present method with Present method with

’ M=N=1 M=N=2
(0.1,0.1) 8.40<10° 1.79x10°
(0.1,0.2) 2.18x10* 8.92x10°
(0.2,0.2) 3.76x10™ 9.28x10°
(0.2,0.4) 1.72x10° 6.72x10°
(0.2, 0.6) 1.88x107 3.22x107
(0.3,0.4) 2.43x10% 1.50<107
(0.25, 0.25) 6.70<10° 5.47x10°
(0.5, 0.5) 42910 1.62x10™

Fig 2: Plot of the function ey, \ (X, t) with M = N =2 for Example 3.

5. Conclusion

We have introduced a new method for the numerical solution of the form (1), based on expanding the
solution in terms of 2D Bernstain polynomials. Since the Bernstein polynomials are not orthogonal, we use
their expanded in terms of Legendre basis. The main reason to use this extention is reduce the computational.
As the numerical results have shown, in the case of a sufficiently smooth solution, a small number of basis
functions is enough to obtain high accuracy. We leave the numerical analysis of the present method as future
work.
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