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Abstract. In this paper, the method of particular solution (MPS) is employed for the numerical solution of 

the one-dimensional (1D) telegraph equation based on radical basis functions (RBFs). Coupled with the time 

discretization and MPS, the proposed method is a truly meshless method which requires neither domain or 

boundary discretization. The algorithm is very simple so it is very easy to implement. The results of numerical 

experiments are presented, and are compared with analytical solutions to confirm the good accuracy of the 

presented scheme, the obtained numerical results also have been compared with the results obtained by some 

existing methods to verify the accurate nature of our method. 

Keywords: method of particular solution (MPS), radical basis function (RBF), numerical solution, 

hyperbolic telegraph equation. 

1. Introduction  

    This paper is devoted to the numerical computation of the one-dimension (1D) hyperbolic telegraph 

equation: 
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 , bxa  , 0t ,                              (1.1) 

with the initial conditions: 

                                             )()0,( 0 xhxu  , )()0,( 1 xhxut  , bxa  ,                                          (1.2) 

and Dirichlet boundary conditions: 

                                                )(),( 0 tgtau  , )(),( 1 tgtbu  , 0t                                                    (1.3) 

where  and   are known constant coefficients, ih  and ig  ( 1,0i ) are known continuous functions. Both 

the electric voltage and the current in a double conductor, satisfy the telegraph equation, where x  is distance 

and t  is time. Note that, for 0 , 0 , Eq. (1.1) represents a damped wave equation, and for 

0  , it is called telegraph equation
]1[
. 

The second-order telegraph equation with constant coefficients is commonly used in signal analysis for 

transmission and propagation of electrical signals
]2[
 and also models mixture between diffusion and wave 

propagation by introducing a term that accounts for effects of finite velocity to standard heat or mass 

transport equation
]3[
. In fact the telegraph equation is more suitable than ordinary diffusion equation in 

modeling reaction diffusion for such branches of sciences. Moreover, this equation also has applications in 

other fields (see
]4[
and the references therein). 

Recently, much attention has been given to the development, analysis, and implementation of stable 

methods for the numerical solution of second-order hyperbolic equations (see
]5[
 and the reference therein ). 

Mohanty et al
]7,6[
, developed new three-level implicit unconditionally stable alternating direction implicit 

schemes for the two and three-space dimensional linear hyperbolic equations. These schemes are second-

order accurate both in space and time. Dehghan and Shokri
]8[
solved the one-dimensional telegraph equation 
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using Kansa’s method. Z. W. Jiang, et al
]9[
extend this problem considered in

]8[
to one kind of partial 

differential equations with variable coefficients. A numerical method based on the interpolating scaling 

functions were described by Lakestani and N. Saray
]10[
. Evans and Hasan

]11[
 applied an Alternating Group 

Explicit (AGE) method to obtain numerical solution of the telegraph equation. Marzieh Dosti, Alireza 

Nazemi
]13,12[
 and J. Rashidinia1, et al

]14[
 developed a numerical method using quartic B-spline collocation 

and cubic B-spline quasi-interpolation.  

In this article, we present a new numerical scheme to solve the second-order hyperbolic telegraph 

equation using the Method of Particular Solutions (MPS) with the Thin Plate Splines (TPS) Radial Basis 

Function (RBF). The results of numerical experiments are presented, and are compared with analytical 

solutions to confirm the good accuracy of the presented scheme, the obtained numerical results also have 

been compared with the results obtained by some existing methods to verify the accurate nature of our 

method. 

In last 25 years, the radial basis functions (RBFs) method is known as a powerful tool for scattered data 

interpolation problem. The use of RBFs as a meshless procedure for numerical solution of partial differential 

equations is based on the collocation scheme. Because of the collection technique, this method does not need 

to evaluate any integral. The main advantage of numerical procedures which use RBFs over traditional 

techniques is meshless property of these methods. RBFs are used actively for solving partial differential 

equations. The examples see
]16,15[
. In the last decade, the development of the RBFs as a truly meshless 

method for approximating the solutions of PDEs has drawn the attention of many researchers in science and 

engineering
]1917[ 
. Meshless method has became an important numerical computation method, and there are 

many academic monographs are published
]2220[ 
. 

    The layout of the article is as follows : In section 2, we introduce the MPS method and apply this method 

on the hyperbolic telegraph equation. The results of numerical experiments are presented in section 3. 

Section 4 is dedicated to a brief conclusion. Finally, some references are introduced at the end. 

 

2. The Method of Particular Solutions (MPS) 

2.1. Radial basis function approximation 

The approximation of a distribution  xu , using RBF, may be written as a linear combination of N  

radial basis functions, usually it takes the following form:  

      xxxx  


j

N

j

ju ,
1

,  for 
dRx                                     (2.1.1) 

where N is the number of data points,  dxxx ,,, 21 x , d  is the dimension of the problem, the  ’s are 

coefficients to be determined and   is the radial basis function. Eq. (2.1.1) can be written without the 

polynomial  . In that case,   must be unconditional positive definite to guarantee the solvability of the 

resulting system (e. g. Gaussian or Inverse Multiquadrics). However,   is usually required when   is 

conditionally positive definite, i. e, when   has a polynomial growth towards infinity. We will use the Thin 

Plate Splines (TPS), which defined as: 

                                             TPS:        ,log, 2

j

m

jjj rrr  xx   ,3,2,1m                             (2.1.2) 

where jjr xx   is the Euclidean norm. 

If 
d

qP  denotes the space of d -variate polynomial of order not exceeding than q , and letting the 

polynomials ),,,( 21 mPPP   be the basis of 
d

qP  in 
dR , then the polynomial  x  in Eq. (2.1.1) is usually 

written in the following form: 

                                                                         ji

m

i

i P xx 



1

                                                          (2.1.3) 

where     ！！！ 1/1  qddqm . To get the coefficients  N ,,, 21   and  m ,,, 21  , the 

collocation method is used. However, in addition to the N  equations resulting from collecting Eq. (2.1.1) at 



Journal of Information and Computing Science, Vol. 10(2015) No.3, pp 199-208 

 

 

JIC email for subscription: publishing@WAU.org.uk 

201 

N  points, an extra m equations are required. This is ensured by the m  conditions for Eq. (2.1.1), 

                                                                  0
1




ji

N

j

j P x ,  .,2,1 mi                                              (2.1.4) 

In a similar representation as Eq. (2.1.1), for any linear partial differential operator  , u  can be 

approximated by: 

                                                                 xxxx   


j

N

j

ju ,
1

                                            (2.1.5) 

2.2. The hyperbolic telegraph equation 
Let us consider the 1D hyperbolic telegraph equation Eq. (1.1), with the initial conditions Eq. (1.2) and 

the Dirichlet boundary conditions Eq. (1.3). 

First, let us discretize Eq. (1.1) according to the following  -weighted scheme: 
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               (2.2.1) 

where 10  , and   is the time step size, and 
x

u
u

2

2




 , using the notation  nn txuu ,  where 

 1nn tt , we get: 
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(2.2.2) 

Assuming that  xu n 1
 is the solution which we want to find, we can suppose the function  xF  as the 

right section of Eq. (2.2.2), this means Eq. (2.2.2) is a Possion equation: 

                                                                     xFxu n  1
                                                                  (2.2.3) 

So, if the function  xF  is known, the Eq. (2.2.2) is equivalent with Eq. (2.2.3) with the same boundary 

condition. Assuming that there are 2N  interpolation points,  kxF  can be approximated by: 

                                                  
kj

N

j

n

jk rxF 





2

1

,  .2,,2,1,  Njk                                           (2.2.4) 

So, when the time size is 1l , we have the following approximation: 

                                                                         
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j
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l ru 

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
2

1

11                                                         (2.2.5) 

where  x  should be support    xx  . In this paper, we take the TPS radial basis function: 

   rrr m log2 ,  ,3,2,1m  

and we can easily get: 

            12/122/1log2212/22   mmrmmrr m
,  ,3,2,1m . 

To guarantee the positive definition, here we use the following approximation: 

                                                              n

Ni

n

Nij

N

j

n

ji

n xrxu   
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 1

2
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                                           (2.2.6) 

where ijr  is the Euclidean norm. The additional conditions due to Eq. (2.1.4) are written as: 

                                                                     0
2

1
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
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j x .                                                      (2.2.7) 

Writing Eq. (2.2.6) together with Eq.(2.2.7) in a matrix form we have: 

                                                                                nn
Au                                                               (2.2.8) 
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where    Tn

N

nnn
uuuu 00221   ,    n

N

nnn
 21  and  NjiaA ij  ,1,  is 

given by: 
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Assuming that there are 2 Np  internal points and pN  2  boundary points, then the NN   matrix 

A  can be split into: ebd AAAA  , where 

  
  
  elsewhereandNjNiNforaA

elsewhereandNjNipforaA

elsewhereandNjpiforaA
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ijb

ijd

01,1

01,21

01,1







 

Using the notation A  to designate the matrix of the same dimension as A  and containing the elements 

ijâ  where ijij aa ˆ , Nji  ,1 , then Eq. (2.2.1) together with the boundary conditions Eq. (1.3) can be 

written in matrix form as: 

           11211 11
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nnnn

d

nn GffuCB                       (2.2.10) 
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and     .0000 1
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1 Tn
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n
ggG 








   Eq. (2.2.10) is obtained by combining Eq. (2.2.1), 

which applies to the domain points, while Eq. (1.3) applies to the boundary points. 

At 0n , the Eq. (2.2.10) has the following form: 

                                        1012101 11 GffuCB d 


   .                          (2.2.11) 

To approximate 
1u , the initial condition )()0,( 1 xhxut   can be used. For this purpose, we discretize this 

initial condition as: 

                                                             
   

 xh
xuxu

1

11

2


 


,  x                                              (2.2.12) 

Writing Eq. (2.2.11) together with Eq. (2.2.12) we have: 

                               ,1121
101201

GffHCAB d               (2.2.13) 

where        .00111

T

p
hhH   Together with the initial condition )()0,( 0 xhxu   and Eq. 

(2.2.10), we can get all  s, thus we can get the numerical solutions. 

Since the coefficient matrix is unchanged in time steps, we use the LU factorization to the coefficient 

matrix only once and use this factorization in our algorithm. 

Remark: Although Eq. (2.2.10) is valid for any value of  1,0 , we will use 
2

1
  (The famous Crank-

Nicolson scheme) in our computation. 

3. Numerical Examples 
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In this section, we present some numerical results to confirm the efficiency of our algorithm for solving 

the 1D hyperbolic telegraph equations. 

3.1. Example 1 

In this example, we consider the hyperbolic telegraph Eq. (1.1) in  ,0 , with the initial conditions: 

   
   








xxu

xxu

t sin0,

sin0,
 

and the boundary condition     .0,,0  tutu   The exact solution is      xttxu sinexp,  . The 

function  txf ,  has the form 

     xttxf sinexp)22(, 2   . 

We use TPS radical basis function with 1m  for the computation, the L  and 2L  errors are obtained 

in Table. 1 for T = 0.4, 0.8, 1.2, 1.6 and 2 with time steps 0001.0  and 02.0dx . The results are also 

compared with the results in papers
 14,12

. 

 

T  Errors  Present Method Cubic B-spline
]14[
 Quartic B-spline

]12[
 

4.0  
errorsL   610776.9   

610748.8   
310423.2   

errorsL 2  510293.1   
610010.1   

310900.2   

8.0  
errorsL   510773.1   

510578.1   
310192.3   

errorsL 2  510296.2   
610822.1   

310200.3   

2.1  
errorsL   510072.5   

510829.1   
310059.3   

errorsL 2  510427.6   
610112.2   

310800.2   

6.1  
errorsL   510048.2   

510814.1   
310627.2   

errorsL 2  510629.2   
610095.2   

310300.2   

2  
errorsL   510886.1   

510664.1   
310140.2   

errorsL 2  510409.2   
610921.1   

310800.1   

Table. 1: 4 , 2  Numerical Errors with  0001.0  and 02.0dx  for Example 1 

The space-time graph of analytical and numerical solutions for T=2 are given in Fig. 1. The results 

obtained show the very good accuracy and efficiency of the new approximate scheme. Note that we can not 

distinguish the exact solution from the estimated solution in Fig. 1. 

 



LingDe Su et.al. : The Method of Particular Solutions (MPS) for Solving One-Dimensional Hyperbolic Telegraph Equation 

 

JIC email for contribution: editor@jic.org.uk 

204 

 

Fig. 1: 4 , 2  Space-time graph of the exact and estimated solutions with T=2 for Example 1. 

3.2. Example 2 

 In this example, we consider Eq. (1.1) with 6 , 2  and the initial conditions:  

   
 








00,

sin0,

xu

xxu

t

       10  x  

the exact solution is   )sin()cos(, xttxu  , we get the boundary conditions from the exact solution. The 

right side function  txf ,  has the form: 

  )sin()cos()sin()sin(2, 2 xtxttxf   . 

The errorsL  compared with the results in papers
]13[
 are given in Table. 2 for T = 0.2, 0.4, 0.6, 0.8 

and 1 with 0005.0  and 002.0dx . 

T  2.0  4.0  6.0  8.0  1 

Present Method 5101953.2   
510573.4   

5100887.6   
510892.6   

5100940.7   

cubic B-spline
]13[
 

5105005.3   
510576.5   

4109334.6   
510686.7   

5108908.7   

Table. 2: The 
errorsL   compared with the cubic B-spline method with 0005.0  and 002.0dx . 

 

The space-time graph of numerical solutions for T=1 are given in Fig. 2. Absolute errors between the 

numerical and analytical solutions are also depicted at different time in Fig. 3. 
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Fig. 2: The space-time graph of numerical solutions with T=1 for Example 2. 

 

 

Fig. 3: Absolute errors between the numerical and analytical solution at different time for Example 2. 

3.3. Example 3 

We consider the hyperbolic telegraph equation Eq. (1.1) with 
2

1
 , 1 , in the interval  4,0 , the 

exact solution is given in
23

 as    txtxu  exp, . The initial conditions are: 

   
   








,exp0,

,exp0,

xxu

xxu

t

    40  x . 

In this case, the right side function   0, txf , and we extract the boundary conditions from the exact 

solution. These results are obtained with 01.0dx , 001.0 . The errorsL  , errorsL 2  and RMS 

errors for T=1, 2, 3, 4 and 5 are obtained in Table. 3. The space-time graph of analytical and numerical 

solution for T=5 is given in Fig. 4. We also give the numerical solutions for different times in Fig. 5. 
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T  1 2  3  4  5  

errorsL   510856.1   
510178.1   

610875.5   
610047.3   

610464.2   

errorsL 2  510526.1   
610881.7   

610798.3   
610824.1   

610534.1   

errorsRMS   610619.7   
610936.3   

610897.1   
710108.9   

710609.7   

Table. 3: The errorsL  , errorsL 2  and RMS errors for T=1, 2, 3, 4 and 5 for Example 3. 

 

 

Fig. 4: Space-time graph of the exact and estimated solutions with T=4 for Example 3. 

 

Fig. 5: The numerical solutions at different times  for Example 3. 

 

In this example, we also consider the telegraph equation in  1,0  for 2 , 2  with the same exact 

solution
]24[

and initial conditions and boundary condition. We results are obtained with 0001.0 , 

01.0dx . Table. 4 gives the absolute error for T=0.5, 0.75 and compared with the results in papers
]25[
. 

 

 

 

 

 



Journal of Information and Computing Science, Vol. 10(2015) No.3, pp 199-208 

 

 

JIC email for subscription: publishing@WAU.org.uk 

207 

x  

Present 

Method Haar-Sinc Collocation
]25[
 

Present 

Method Haar-Sinc Collocation
]25[
 

5.0T  16k  32k  75.0T  16k  32k  

1.0  634.9 e  416.4 e  512.2 e  642.5 e  483.3 e  432.1 e  

2.0  662.4 e  330.1 e  444.5 e  733.5 e  338.1 e  498.3 e  

3.0  798.7 e  308.2 e  303.1 e  734.5 e  360.2 e  323.1 e  

4.0  685.2 e  352.2 e  328.1 e  636.2 e  324.3 e  362.1 e  

5.0  681.3 e  365.2 e  332.1 e  666.3 e  339.3 e  365.1 e  

6.0  616.6 e  355.2 e  324.1 e  640.3 e  317.3 e  346.1 e  

7.0  679.3 e  322.2 e  404.1 e  641.1 e  364.2 e  309.1 e  

8.0  701.2 e  359.1 e  472.6 e  641.2 e  369.1 e  483.4 e  

9.0  650.5 e  406.6 e  598.8 e  681.2 e  476.3 e  402.3 e  

Table. 4: The absolute error compared with the results from Haar-Sinc Collocation Method
]25[
 

 

4. Conclusion 

 In this paper, the method of particular solution (MPS) is employed for the numerical solution of second –order 

hyperbolic telegraph equation based on radical basis functions (RBFs). Coupled with the time discretization and MPS, 

the proposed method is a truly meshless method which requires neither domain or boundary discretization. The results 

of numerical experiments are presented, and are compared with analytical solutions confirmed the good accuracy of the 

presented scheme, the obtained numerical results also compared with the results obtained by some existing methods 

verified the accurate nature of our method.. 
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