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Abstract. Hybrid synchronization of the hyperchaotic 4D systems with different initial conditions is 

investigated via impulsive coupling. Based on the Lyapunov stability theory, sufficient conditions are given to 

get the hybrid synchronization by constructing a Lyapunov function. It is proved that some partial state 

variables of two hyperchatic systems are anti-synchronized, while other state variables are complete 

synchronized, when impulsive coupling controllers are imposed on the response system. Numerical simulation 

results are presented to demonstrate the effectiveness of the proposed chaos synchronization scheme. 
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1. Introduction  

      Starting from the pioneering work of Pecora and Carroll [1], synchronization of chaos has attracted much 

attention [2-3] due to its many applications in physics, secure communication, chemical reactor, control theory, 

telecommunications, biological networks, artificial neural networks, etc. Several different types of synchronization of 

coupled chaotic oscillators have been described theoretically and observed experimentally, such as complete 

synchronization[4], anti-synchronization[5], phase synchronization[6], generalized synchronization[7], partially 

synchronization[8], time-scale synchronization[9], projective synchronization[10], Q-S synchronization[11], and even 

cluster synchronization [12], etc. Many different methods have been proposed to study synchronization such as active 

control, feedback control, observer control[13], etc. 

        As far as we know, in drive-response synchronization, the research results reported on the same 

synchronization regime of the response and drive systems. Recently, a class of new synchronization 

phenomenon, hybrid synchronization in chaotic systems had been investigated intensively [14-16]. In hybrid 

synchronization scheme, one part of the system is anti-synchronized and the other is completely 

synchronized so that complete synchronization (CS) and anti-synchronization (AS) co-exist in the system. In 

this paper, the coexistence of CS and AS between two identical hyperchaotic systems will be invenstigated 

via impulsive coupling controller.The rest of this paper is organized as follows. Section 2 describes the 

Hyperchaotic 4D system. In Section 3, based on the Lyapunov stability theory, the Hybrid synchronization 

of the hyperchaotic 4D systems via impulsive coupling is presented and the stability of the error dynamic 

system is derived. In Section 4, some numerical illustrative examples are provided to illustrate the 

effectiveness of the proposed scheme. Finally, conclusions are presented in Section 5. 

 

2. System description of hyperchaotic 4D system 

        The considered hyperchaotic 4D system is described as  

                        

                                                           
                                             

      
                                                          

                                                                  

                                           (1) 

where ix ( 1,2,3,4)i   are state variables. a , b , c  and d are real constants. the system (1) is the hyperchaotic 

system constructed by Cai et al.[39]. Therefore, in the following sections, we will investigate the coexistence of anti-

phase and complete synchronization of the hyperchaotic 4D systems via impulsive coupling controller.  

 

3. Hybrid synchronization of the hyperchaotic 4D system via unidirectional 
impulsive coupling 
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For convenience, the drive hyperchaotic 4D system is chosen as (1) and the response system is given as the following: 

        

 
 
 

 
        

 
  

 
                                                   

     
 
   

 
  

 
 
 
  

 
                                 

     
 
    

 
                                                           

       
 
                                                                 

                                   (2a) 

( ) ( ) ( ( ) ( ))i k i k i i k i ky t y t y t x t      , i=1 2,3 4, , , kt t ,                     (2b) 

where  =
1 2 3 4( , , , )T    are positive constant vector, 

0 1 20 t t t    
1k kt t     and 

kt   as 

k  .  

The goal is to find some conditions on the control gains i , and the impulse distances 
1k k kt t    , so that the state 

variables 
1y , 

2y  and 
4y  in response system are anti-synchronized to 

1x ,
2x  and 

4x  in drive system, respectively, while 

the third state variable 
3y  in response system is complete-synchronized to 

3x  in drive system. For this purpose, let 

1 1 1e y x  , 
2 2 2e y x  , 

3 3 3e y x  , 
4 4 4e y x  .                                             (3) 

It follows from (1) and (2) that the errors system (3) are governed by the following dynamical system: 

                    

 
 
 

 
                                                                                    

               
                                               

      
 
      

                                                               

                                                                                           

                        (4a) 

           ( ) ( ) ( ),i k i k i i k ke t e t e t t t     , i=1 2,3 4, , ,                                                    (4b) 

which can be rewritten as 

           ( , )e Ae f x y  , 
kt t                                                                                    (5a) 

           
1( ) ( ) ( ),i k i k i k ke t e t e t t t     , i=1 2,3 4, , ,                                                          (5b) 

where  1 2 3 4, , ,
T

e e e e e ,
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 max .  and  max .  denote the maximal eigenvalue and the maximal singular value of matrix, respectively. 

The goal is to propose simple input controllers so that the state errors in (5) satisfy 

lim ( ) 0i
t

e t


 , i=1 2,3 4, , .                                                                        (6) 

We propose the following theorem: 

Theorem 1. Consider the unidirectional impulsive coupling (1) and (2), suppose that the average impulsive interval of 

the impulsive sequence  ={ 0 1 2, , ,...t t t } is less than aT . Then, the system (4) is globally exponentially stable with 

convergence rate   if 

1
ln

aT
    .                                                                                  (7) 

Proof: Let 1 2 3 4( , , , )TE e e e e , choose the Lyapunov functional candidate as following 

1

2

TV E E .                                                                                           (8) 

When 1[ , )k kt t t , the time derivative of V  along trajectories of error dynamical (5) can be given by 
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                             
1

2

T TV E E E E   

                              =
1 1

1
( )

2

T TE J J E  

TE E V .                                                                                                                                  (9) 

When kt t , the following equality can be obtained 

                           
1

( ) ( ) ( )
2

T

k k kV t E t E t  

                                 =
2 2

1
( ) ( )

2

T T

k kE t J J E t 
 

 ( )kV t 
.                                                                                                                                        (10) 

So when 0 1[ , )t t t , according to V V , we can get 

0( )

0( ) ( )
t t

V t V t e
 

 ,                                                                                                                   (11) 

1 0( )

1 0( ) ( )
t t

V t V t e
 

 .                                                                                                                 (12) 

Similarly, for 1 2[ , )t t t , the following equalities can be given 

                               1( )

1( ) ( )
t tV t V t e 

    

    0( )

0( )
t t

V t e
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 ,                                                                                                                  (13) 

2 0( )

2 0( ) ( )
t t

V t V t e
 

 .                                                                                                                 (14) 

In general, for 1[ , )k kt t t , we have 

( )V t 0( )1

0( )
t tk V t e

  .                                                                                                                (15) 

Let 0( , )N t t  be the number of impulsive times of the impulsive sequence   on the interval 0( , )t t . Hence, for any

t R , 

( )V t 0 0
( , ) ( )

0( )
N t t t t

V t e  
 .                                                                                                             (16) 

Since the average impulsive interval of the impulsive sequence ={ 0 1 2, , ,...t t t } is less than aT , we have 

0( , )N t t  0
0

a

t t
N

T


 , 0T t   .                                                                                                      (17) 

 Since | | < 1, according to (16) and (17), it can be gotten that 
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 0 0

0

1
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V t e
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
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0
0 0
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



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0
0

1
( ln )( )

0( ) a

t t
N T

V t e
 


 


 .                                                                      (18) 

It follows from (18) that there exists constant 0M = 0N 
, such that 

( )V t
0

1
( ln )( )

0 0( ) a

t t
T

V t M e
  

 ,                                                                      (19) 

which further implies that 

21

2
E 0( )

0 0( )
t t

V t M e
 

 , 
1

ln
aT

    .                                                            (20) 

Since  < 0, we can conclude that the error dynamical system (5) can be globally exponentially stabilized to the 

equilibrium point zero. Then the unidirectional impulsive coupling hyperchaotic 4D systems (1) and (2) achieved 

hybrid synchronization. Theorem 1 is proved completely. 

  When fixed i = ( , , )T   and  1k kt t   , based on Theorem 1, we can get the following corollary directly. 
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Corollary 1 Considering the unidirectional impulsive coupling hyperchaotic 4D systems (1) and (2), let i = and  

1k kt t    for all 1,2,3....k  , if 

1
ln

aT
    ,                                                                                                                        (21) 

and then, the systems (1) and (2) achieve hybrid synchronization, where  =  =
1 1

max
2

TJ J


 
 
 

,  =  max 2 2

TJ J . 

 

Fig.1. The distribution of the average of errors described in Eq. (22) in the two-parameter phase space ( , ), where 

t=10000 to 15000 time units (t = i*h). The simulation step of   is chosen as 0.1. 

4. Illustrative numerical simulation examples 

In this section, some numerical examples are presented to illustrate the theoretical analysis. In the following 

numerical simulations, the system parameters are selected as a =20, b =10.6, c = 2.8, d =3.7. The initial values of 

drive system and the response system are chosen as (-2.0, 3.0, 0.4, 0.2) and (5.0, 8.0, 2.5, 1.1), respectively. With above 

selected values, the chaotic behavior of system (1) can be observed. From condition (21), the synchronization of the 

impulsively coupled system is related to the impulsive coupling strength i , impulsive reset period  . In order to 

explore the synchronization behavior of the scheme, for simplicity we fix i =  and 1k kt t   .  and   are 

taken as bifurcation parameters to see how the degree of the hybrid synchronization evolves with the variation of the 

parameters. The distribution about the summation of errors function on corresponding variable as following (22) in the 

two-gain coefficients phase space ( ,  ) is illustrated in Fig.1.  

500,000

1

( ) ( )x x

i

e e i


                                                                                         (22) 

The summation of errors function is calculated from t=400 to 500 time units(t = i*h, h is the time step). From the 

bifurcation diagram plotted in Fig.2, it could be concluded that the degree of the hybrid synchronization with impulsive 

coupling could be dependent on the selection of the two gain coefficients  and  (see Fig. 2). The hybrid 

synchronization can be achieved with suitable parameters of  ,  (see Fig.3 and Fig.4), where = =0.3. 
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Fig. 2. Bifurcation diagram between 1e  and  , (a) =0.2, (b) =0.4. 

 

 

Fig.3 Time evolution curves of two systems with the impulsive controllers, where  = =0.3 

(a) ( 1x , 1y ), (b) ( 2x , 2y ), (c) ( 3x , 3y ), (d) ( 4x , 4y ). 

 

Fig.4 Dynamics of synchronization error states ie ( 1,2,3,4i  ) when = =0.3. 
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5. Conclusions 

    In this paper, the hybrid synchronization of two hyperchaotic  systems is investigated via impulsive coupling. By 

constructing Lyapunov function, the sufficient conditions are given to get the hybrid synchronization. Theoretical 

analysis results show that under suitable conditions, two complex hyperchaotic systems can realize the hybrid 

synchronization when impulsive controllers are imposed on the response system unidirectional. That is to say, the state 

variables 
2x , 

2y  and 
2w  in response system are anti-synchronized to 

1x ,
1y and 

1w  in drive system, respectively, 

while the third state 
2z  in the response system is complete synchronized to 

1z  in the drive system, and the 

corresponding parameter observers will also be approached analytically.  
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