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is followed directly in this literature. To do so, the rest of the paper is organized as follows. Section 2, we 
summarize some basic definitions used in the paper, and list the steps of our algorithm. In Section 3, we 
present and analyze the experimental results, which indicate that the proposed algorithm is quite efficient. 
Finally, we summarize our paper in Section 4. 
 

2. Preliminaries and the algorithm  

In this section, we briefly review some related knowledge, and state our algorithm. 

   Firstly, we give the definition of projection operator, which is defined as a mapping from nR  to its 
nonempty closed convex subset  : 

.|,|min{arg:][ nRxyxyxP   

In [6], Figueiredo et al. express the L1NM problem as a quadratic programming by splitting the variable x  

into its positive and negative parts. That is, for any vector nRx , it can be formulated for 

,0,0,  vuvux  

where 
nn RvRu  , , and   )(,)( iiii xvxu  for all ni ,,2,1  with ),0max{)(   .  We thus have 

veuex T
n

T
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1
,  where ne   is an n -dimensional vector with all elements one, so the L1NM problem (1) 

can be written as the following bound-constrained quadratic programming (BCQP): 
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In compressive sensing (CS), matrix A  is often formulated as discrete Fourier transform (DFT), discrete 
cosine transform (DCT), or discrete Walsh-Hadamard transform (DWT), and the multiplication involving A  
can be computed very fast. 

   Now, we are ready to transform the BCQP into a linear variational inequality (LVI) problem: Find nRz 2


such that 

             .0',0',  zzzcHz                                                        (2) 

It is well known that the above LVI can be equivalently solved by seeking a zero point of the mapping 

)],([),( 2 cHzzPzze nR



  

where 0  is a constant. 

     Note that the function cHz  is monotone on nR2  since the matrix H  is positive semi-definite. 

This property ensures the global convergence of the following modified extra-gradient method for the L1NM 
problem which is based on the method proposed by Han [11]. 

 

Algorithm 2.1. (MEGM) 

 Step 0. Given 0 . Choose the starting point nRvuz 2
000 ],[  . Set the parameters )2,0( , 

)1,0(,0,10    and 0k . 

 Step 1. Stop if  ),(ze ; else, go to Step 2. 

 Step 2. Compute the temporal point kz~ via       

)],([~
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k
k

R

k
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

 

where km
k    with km  being the smallest nonnegative integer m  such that 
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 Step 3. Compute the descent direction kd by 
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and get the next iterate 
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].)~([2
1

k
kk

R

k dzzPz n 


  

Step 4. If 

.),~(),(),~(),(),~()(
2

 kkkkkk
k zezezezezFzF   

then, set  /1 kk  . Set 1 kk  and go to Step 1. 

Remark 2.1. The MEGM method can be extended to solve the box constrained compressing sensing 
problem, that is hxl  . In fact, we only need to modify the projection operator in Step 1. However, the 
non-smooth equations based method proposed by Xiao et al. [10] cannot deal this issue. 

Based on Theorem 3 in [11], the global convergence of MEGM method can be stated as follows. 

Theorem 2.1. The iterate sequence }{ kz generated by MEGM method either terminates in a finite 

 number of steps, or converges to a solution point *z , a solution of the BCQP (set 0 ). 

 

3.   Numerical experiments  

In this section, we present some experiments to illustrate the efficiency of the proposed method. All 
experiments were performed under Windows XP operating system and Matlab 7.0 running on a Lenovo 
laptop with AMD C-50 Processor at 797 MHz, 1.60GB of memory. We measure the quality of restoration by 
means of squared error (MSE) to the original signal x~ , that is 

,~1 2

2

*xx
n

MSE   

where 
*x  is the restored signal. For the MEGM method, we set ,1,95.1,75.0,6.0 0  
.45.0 In our first experiment, we consider a typical CS scenario, where the goal is to reconstruct a 

length- n  sparse signal from m  observation, where nm  . Here, we set 810 2,2  mn , and the original 

signal contains 128 randomly placed spikes. The nm matrix A  is obtained by first filling it with 
independent samples of a standard Gaussian distribution and then ortho-normalizing the rows. The 
observation $b$ is generated by: 

 Axb , 

where   is the Gaussian noise distributed as ),0( 2IN  . Here we choose 42 10 . Parameter 

 is set as 


 bAT01.0 . 

We use 2/)(
2

1
bAxxxf    as the merit function and stop the MEGM method when the relative 

change of the objective function is below 510 , i.e., 
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