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maximized under given constraint. In the recent years, a number of works has been reported in the literature 
considering the parameters of the problem as interval valued. In this paper, we have considered redundancy 
allocation problem of series system with four subsystems. Each subsystem is connected in parallel with 
identical components. The reliability of each component is considered to be interval number. Then the 
corresponding problem has been formulated as an interval valued constrained optimization problem. Then 
the constrained optimization problem has been transformed into unconstrained one by Big-M penalty 
function technique then solved by Genetic Algorithm and Interval order relations developed by Sahoo et al. 
[8]. Finally, to illustrate the methodology, a numerical example has been solved and the computed results 
have been presented. 
 

2. Assumptions and Notations 
A redundancy allocation problem is formulated under the following assumptions and notations. 
2.1. Assumptions: 
(i) Reliability of each component is imprecise and interval valued. 
(ii) Failures of components are mutually statistically independent. 
(iii)The components as well as the system have two different states, viz. operating state and failure 

state. 

2.2. Notations: 
 
n  the number of subsystems 
x  1 2( , ,..., )nx x x  

jx  the number of components in j-th subsystem, arranged   in  parallel  

jr  The reliability j-th Component 

sR  The system reliability 

[ , ]j jL jRr r r  Interval valued reliability of j-th component 

[ , ]SL SRR R  Interval valued system reliability 

jl , ju     lower and upper bounds of jx  

ig  The i th  constraint function 

ib  The upper limit on the i th resource 

(.)U  Uniform distribution 

  Feasible region 
FS Feasible Solution 
NFS Nonfeasible Solution 

 

3.  Mathematical formulation of the Problem 
Let us consider a redundancy allocation problem of series system. Each subsystem is connected in 

parallel with identical components. Our objective is to maximize the overall system reliability subject to the 
given resource constraints. This can be done by finding the number of redundant components in each 
subsystem.  
The general form of the redundancy allocation problem is as follows: 

                      Maximize  
1

1 1 j
n x

S j
j

R r


                                                                                            (1) 

                       subject to  ( )i ig x b , 1, 2, ,i m     

where 1 , is integer, 1,...,j j j jl x u x j n    , ib  is the i-th available resource, 1, 2, , .i m   
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When reliability of each components are interval numbers i.e., [ , ]j jL jRr r r then the problem (3.1) reduces to 

                       Maximize  
1

[ , ] 1 1 [ , ] j
n x

SL SR jL jR
j

R R r r


                                                                    (2) 

                        subject to  ( )i ig x b , 1, 2, ,i m     

where 1 , is integer, 1,...,j j j jl x u x j n    , ib  is the i-th available resource, 1, 2, , .i m   

In Problem (2), reliability of each component is interval valued. For solving such type of problems, 
interval mathematics and interval ranking play an essential role. 

 

4. Finite Interval Mathematics  

An interval number A  is a closed interval denoted by [ , ]L RA a a  and is defined by

[ , ] { : , }L R L RA a a x a x a x     , where La  and Ra are the left and right limits respectively and  is 

the set of all real numbers. An interval A  can also be expressed in terms of centre and radius as ,c wA a a

={ : , }c w c wx a a x a a x     , where ca and wa  be the centre and radius of the interval A  respectively 

i.e., ( ) 2c L Ra a a  and ( ) 2w R La a a  . Actually, every real number can be treated as an interval, such as 

for all x , x  can be written as an interval [ , ]x x  having zero width. 
 
4.1 Arithmetic of interval numbers 
 
Here, we shall give the concise definitions of arithmetical operations like addition, subtraction, 
multiplication, and division of interval numbers. 
Interval addition: Let [ , ] ,L R c wA a a a a    and [ , ] ,L R c wB b b b b     be two intervals. Then the addition 
of two intervals A and B is given by 

 [ , ] [ , ] [ , ]L R L R L L R RA B a a b b a b a b       
 or , , ,c w c w c c w wA B a a b b a b a b             

Interval subtraction: The subtraction of two intervals [ , ] ,L R c wA a a a a    and [ , ] ,L R c wB b b b b    is 
given by 

[ , ] [ , ] [ , ]L R L R L R R LA B a a b b a b a b          

or , , , , ,c w c w c w c w c c w wA B a a b b a a b b a b a b                   

Scalar multiplication of an interval number: The multiplication of an interval [ , ] ,L R c wA a a a a    by a 

real number  is defined by

 

[ , ] for 0,

[ , ] for 0,
L R

R L

a a
A

a a

  


  


  
     

 or , ,c w c wA a a a a          

Product of two interval numbers: 
The product of two different intervals [ , ]L RA a a  and [ , ]L RB b b is defined by

[min( , , , ),max( , , , )]L L L R R L R R L L L R R L R RA B a b a b a b a b a b a b a b a b  . 

Division of two interval numbers: The division of the interval [ , ]L RB b b by the interval [ , ]L RA a a  is 

defined as 
1 1 1

[ , ] [ , ], provided 0 [ , ]L R L R
R L

B
B b b a a

A A a a
     . 

The above definitions are given in the books written by Moore [9] and Hansen and Walster [10].  
 

4.2 Interval Order Relations 

For finding the optimum solution in solving the optimization problems with interval valued 
objectives, we need to define the order relations of interval numbers.  
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                    Maximize    
1

[ , ] 1 1 ,1 1j j
n x x

SL SR jL jR
j

R R r r


                                                          (3)  

                     subject to  ( )i ig x b , 1, 2, ,i m     
where 1 , is integer, 1,...,j j j jl x u x j n    , ib  is the i-th available resource, 1, 2, , .i m   

Clearly the problem (3) is an interval valued constrained optimization problem. To solve this optimization 
problem, we propose to consider heuristic methods. One such method of importance and wide scope is 
Genetic Algorithm. 

5. Genetic Algorithm based Constraints handling technique  
The problem (3) is an interval valued constrained optimization problem. In the application of Genetic 
algorithm for solving the problems with interval objectives, there arises an important questions for handling 
the constraints. During the past, several techniques have been addressed to deal with the constraints in 
genetic algorithms for solving problems with a non-interval/ fixed objectives. Here, we have to solve the 
constrained optimization problem by using penalty function technique. In this technique, the given 
constrained optimization problem is converted to an unconstrained optimization problem in which the 
reduced objective function involves objective function and a penalty for violating the constraints. In this 
work we have used Big-M penalty [12].  
The form of Big-M penalty is as follows: 
For the constrained optimization problem (3) 

                      Maximize    
1

[ , ] 1 1 ,1 1j j
n x x

SL SR jL jR
j

R R r r


                                                        (4)                         

                       subject to  ( )i ig x b , 1, 2, ,i m     
where 1 , is integer, 1,...,j j j jl x u x j n    , ib  is the i-th available resource, 1, 2, , .i m   

The form of Big-M penalty is as follows: 

                        Maximize
[ ( ), ( )] if垐[ ( ), ( )]
[ , ] if

SL SR
SL SR

R x R x x
R x R x

M M x


    

                                                        (5)    

where { : ( ) , 1,2, , and1 , integer, 1,..., }i i j j j jx g x b i m l x u x j n            

6. Genetic Algorithm (GA)  
To solve the nonlinear optimization problem (5) with interval objective we have developed an 

advanced optimization technique, viz. Genetic Algorithm (GA) with interval valued fitness. The most 
fundamental idea of Genetic Algorithm [13] is to replicate the natural evolution process artificially in which 
populations undergo continuous changes through genetic operators, like crossover, mutation and selection. In 
particular, it is very useful for solving complicated optimization problems which cannot be solved easily by 
direct or gradient based mathematical techniques. It is very effective to handle large-scale, real-life, discrete 
and continuous optimization problems without making unrealistic assumptions and approximations. 
The algorithm for implementing GA is as follows: 
 

Algorithm 

Step-1:  Set population size ( sP ), crossover probability ( cP ), mutation probability ( mP ), maximum 

generation ( gM ) and bounds of the variables , ( 1,..., )i il u i n . 

Step-2:   0t  [ t  represents the number of current generation]. 
Step-3:  Initialize the chromosome of the population ( )P t [ ( )P t represents the population at -t th generation]. 

Step-4:  Evaluate the fitness function of each chromosome of ( )P t considering the objective function as the 
fitness function. 

Step-5:   Find the best chromosome from the population ( )P t . 

Step-6:   t is increased by unity. 
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Step-7:  If the termination criterion is satisfied go to step-14, otherwise, go to next step. 
Step-8:  Select the population ( )P t from the population ( 1)P t  of earlier generation by tournament selection 

process. 
Step-9:  Alter the population ( )P t by crossover, mutation and elitism operators. 

Step-10:  Evaluate the fitness function value of each chromosome of ( )P t . 

Step-11:  Find the best chromosome from ( )P t . 

Step-12:  Compare the best chromosome of ( )P t and ( 1)P t  and store better one. 
Step-13:  Go to step-6. 
Step-14:  Print the best chromosome (which is the solution of the optimization problem). 
Step-15:  End. 
The following basic components have been considered to implement the genetic algorithm.  

(i)  GA parameters ( sP , cP , mP and gM )  

(ii)  Chromosome representation  
(iii) Initialization of population 
(iv)  Evaluation of fitness function  
(v)  Selection process  
(vi)  Genetic operators (crossover and mutation) 

Here we shall discuss the main three important components of GA viz. selection process, crossover and 
mutation. 

In GA, the selection operator plays an important role as it is the first operator applied to the 
population. The aim of this operator is to select the above average solutions and eliminate below average 
solutions from the entire population for the next generation under the well known principle “survival of the 
fittest”. Here, we have used tournament selection process of size two with replacement as the selection 
operator considering the following assumptions: 
(i)  When both the chromosomes are feasible then one with better fitness value is selected. 
(ii) When one chromosome is feasible and another is infeasible then the feasible one is selected. 
(iii) When both the chromosomes are infeasible with unequal constraints violation, then the chromosome 

with less constraints violation is selected. 
(iv) When both the chromosomes are infeasible with equal constraints violation, then any one chromosome is 
selected. 

After the selection, a crossover operator is applied to the resulting chromosomes which have 
survived. It operates on two or more parent chromosomes at a time and creates the offspring by recombining 
the feature of the parent solutions. In this work, we have used intermediate crossover.  
The different steps of intermediate crossover operation are as follows: 
Step-1: Find the integral value of *c sP P    and store it in cN . 

Step-2: Select two parent chromosomes ( )t
ks and ( )t

is  randomly from the population. 

Step-3: (a) Generate ( ) ( )(0, )t t
kj ijg U s s  , 1,2,...,j n  

             (b ) Compute the components 

( ) ( ) ( ) ( )
( )

( ) ( )

if

otherwise

t t t t
ijkj kj kjt

kj t t
kj kj

s s g s s
s

s s g

    
 

      

                                                     and 

( ) ( ) ( )
( )

( )

if

otherwise

t t t
ij ijkjt

ij t
ij

s g s s
s

s g

   


 

 Step-4: Compute ( 1) ( ) ( ) ( ) ( )argument of best of { ( ), ( ), ( ), ( )}t t t t t
i ik k ks f s f s f s f s                                

                       and ( 1) ( ) ( ) ( ) ( )argument of best of { ( ), ( ), ( ), ( )}t t t t t
i i ik ks f s f s f s f s   

Step-5: Repeat Step-2 and Step-4 for 
2

cN
 times. 

The aim of the mutation operation is to introduce the random variations into the population used to 
prevent the search process from converging to the local optima. Sometimes, it helps to regain the information 
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