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Abstract. In this paper, we present the comparative study of Haar wavelet collocation method (HWCM) 

and Finite Element Method (FEM) for the numerical solution of parabolic type partial differential equations 

such as 1-D singularly perturbed convection-dominated diffusion equation and 2-D Transient heat conduction 

problems validated against exact solution. The distinguishing feature of HWCM is that it provides a fast 

converging series of easily computable components. Compared with FEM, this approach needs substantially 

shorter computational time, at the same time meeting accuracy requirements. It is found that higher accuracy 

can be attained by increasing the level of Haar wavelets. As Consequences, it avoids more computational 

costs, minimizes errors and speeds up the convergence, which has been justified in this paper through the 

error analysis. 

Keywords: Haar wavelet collocation method, parabolic equation, Finite difference method, Finite                    

element method, Heat conduction problems. 

1. Introduction  

 Differential equations have several applications in many fields such as: physics, fluid dynamics and 

geophysics etc. Many reaction–diffusion problems in biology and chemistry are modeled by partial 

differential equations (PDEs). These problems have been extensively studied by many authors, like Singh 

and Sharma [1], Giuseppe and Filippo [2] in their literature and their approximate solutions have been 

accurately computed provided the diffusion coefficients, reaction excitations, initial and boundary data are 

given in a deterministic way. However, it is not always possible to get the solution in closed form and thus, 

many numerical methods come into the picture. These are Finite Difference, Spectral, Finite Element and 

Finite Volume Methods and so on to handle a variety of problems. Many researchers such as, Kadalbajoo 

and Awasti [3], F. de Monte [4] are involved in developing various numerical schemes for finding solutions 

of heat conduction problems  appear in many areas of engineering and science. So, finding out flexible 

techniques for generating the solutions of such PDEs is quite meaningful. Researchers like Medvedskii and 

Sigunov [5] and Doss et.al [6] have used different techniques to solve the above problems and similar ones. 

Singularly perturbed problems appear in many branches of engineering, such as fluid mechanics, heat 

transfer, and problems in structural mechanics posed over thin domains. Theorems that list conditions for the 

existence and uniqueness of solutions of such problems are thoroughly discussed by Ross et.al [7] and Gamel 

[8].  

     The application of FEM to various heat conduction problems began through a paper by Zienkienicz and 

Cheung in 1965 [9]. Subsequently, Wilson and Nickel[10] have studied time dependent finite element with 

variational principle in their work on transient heat conduction problems with Gurtin’s Variational principle 

[11]. Zienkienicz and Parekh [12] derived isoparametric finite element formulations for 2-D and 3-D 

transient heat conduction problems to approximate the solution in space with recursion process of the 

solution in time.  Argyris et. al [13, 14] analyzed structural problems by using real time-space finite elements. 

A parabolic time-space element, an unconditionally stable in the solution of heat conduction problems 

through a quasivariational approach was used by Tham and Cheung [15]. Wood and Lewis [16] compared 

the heat equations for different time-marching schemes. However, it is necessary to choose very small time-

steps in order to overcome unwanted numerically induced oscillations in the solution. 
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From the past few years, wavelets have become very popular in the field of numerical approximations. 

Among the different wavelet families mathematically most simple are the Haar wavelets. Due to the 

simplicity the Haar wavelets are very effective for solving ordinary and partial differential equations. In the 

previous years, many researchers like Bujurke & Shiralashetti et al. [17, 18, and 19], Hariharan & Kannan 

[20] have worked with Haar wavelets and their applications. In order to take the advantages of the local 

property, Chen and Hsiao [21], Lepik [22, 23] researched the Haar wavelet to solve the differential and 

integral equations. Haar wavelet collocation method (HWCM) with far less degrees of freedom and with 

smaller CPU time provides better solutions than classical ones, see Islam et.al. [24]. In the present work, we 

use HWCM for solving typical heat conduction problems. 

The present paper is organized as follows; Haar wavelets and its generalized operational matrix of 

integration are presented in section 2. In section 3and 4 Method of solution of FEM and HWCM are 

discussed respectively. Section 5 deals with the numerical findings with error analysis of the examples. 

Finally, conclusion of the proposed work is presented in section 6. 

2. Haar wavelets and operational matrix of integration 

The scaling function 1( )h x  for the family of the Haar wavelets is defined as 
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The Haar wavelet family for  0,1x  is defined as 
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In the above definition the integer 2lm  , 0,1,..., ,l J  indicates the level of resolution of the wavelet and 

integer 0,1,..., 1k m   is the translation parameter.  

Maximum level of resolution is J . The index i  in Eq. (2.2) is calculated using 1i m k   . In case of 

minimal values 1, 0m k   then 2i  . The maximal value of i  is
12JN  . 

Let us define the collocation points
0.5

, 1,2, ,j

j
j Nx

N


   , discretize the Haar function ( )ih x , in this 

way, we get Haar coefficient matrix H( , ) h ( )i ji j x , which has the dimension N N . For 

instance, 3 16J N   , then we have 
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The operational matrix of integration via Haar wavelets is obtained by integrating (2.2) is as, 
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For instance, 3 16J N   , from (2.5) then we have 
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and from (2.6) we get 
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also 

 
0

1

i iCh Ph x dx   and for instance 3 16J N   , then we have 
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3.    Finite Element Method for the Numerical Solution of Parabolic equations 

Case (i) FEM in one dimension 

The equation can be written with the given conditions     

                                  1 ( , ) :0 1
u u

a cu c f x t in x
x x t

   
       
   

                             (3.1) 

To formulate a FEM model of the governing differential equation, the domain  0,1   is divided into M 

(=2N) elements. A Typical element  ,a bx x 
 
where ,a bx x

 
are the global coordinates of the end nodes 

of the element. We begin with the weak formulation by multiplying the given equation with the test 

function w , we get  
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We assume finite element solution in the form 
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Where st is the initial time and st t t  
 is the time interval and ( )jL x , for two linear elements 

i.e. 2 1 & 2n j   ,  1 2( ) 1 & ( )
x x

L x L x
h h

  
. 

The finite element solution which is continuous at space is obtained as 
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In matrix form, we get  

                                                 
      1K u M u F     

                                                   (3.5)
                                                                                                

 

where    1 0K K M         
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The weak formulation is a variational statement of the given problem in which it is integrated against a test 

function, and hence after discretization, resulting matrices can be easily solved.  

Discretization:  

Rewritting the finite element model in the matrix form (3.5) can be rewritten as 

(By taking     1 0 1,M M M K K              )     
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                                                   (3.9)

                                       

 

The semidiscrete equations of a typical element for the choice of the linear interpolation functions are 

1 1 1

2 2 2

2 1 1 11

1 2 1 16

u u Fh

u u Fh

        
         
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(3.10) 

where h is the length of the element.  

For different difference (i.e. forward, backward and Crank-Nicolson) schemes, general form of  -family of 

the approximation is given by   
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Where t is the time step and st is the initial time, and  
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Here we used Backward difference scheme to approximate the solution with  =1 and which is stable and 

order of accuracy is ( )O t . 

For M = 2-Element model, the   family of time approximation schemes are put in the matrix form as 
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      
         

                 
         

     
         
     

= 

 

1 1

2

3

1 1
(1 ) (1 ) 0

3 3 6 6

1 1 1
(1 ) 2 (1 ) (1 )

6 6 3 3 6 6

1 1
0 (1 ) (1 )

6 6 3 3

st

h h h h
t t

h h
u F

h h h h h h
t t t u t F

h h h
u

h h h h
t t

h h

 

  

 

    
           

      
         

                      
         

     
           
     

2

3
st

F

 
 
 
 
 

                   

(3.14)

       

  

FEM consistency, accuracy and stability: 
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The equation (3.11) represents an  -family of approximation, error is in the solution  
st t

u


at each time 

step. If the error is bounded, the solution scheme is said to be stable. The numerical scheme is said to be 

consistent, if the round off and truncation error tends to zero as 0t   . The size of the time step will 

control both accuracy and stability.  The numerical solution converges to the exact solution when the 

numbers of elements are increased and time step t is decreased. If the numerical scheme is stable and 

consistent, it is also convergent. 

 

 

Case (i) FEM in Two dimensions 

The governing equation for transient heat conduction problems with a distributed source  ( , , )F x y t  may be 

given by  

 
2 2

2 2

u u u
K F c in

x y t


   
    

     

                                                                           (3.15)

                                                                                           
Subjected to     

0( , ,0) ( , )u x y u x y  
 
 in                                                                               (3.16)                                                                           

Where  ( , , )u x y t  is the temperature function, 0u is initial temperature field, F the specified thermal 

conductivity,  the density, c the specific heat,  ,    is a bounded domain with a boundary  

1 2 3    with the following conditions   

        su u  (On 1 )                                                                                                                  (3.17)                                                                                                             

    

u
K q

n


 


 (On

2
 )                                                                                                              (3.18)                                                                                                      

   
 a

u
K h u u

n


  


 (On

3
 )                                                                                                   (3.19)                                                                                               

Where su   is boundary surface temperature, q is the intensity of heat input, h  the heat transfer coefficient, 

,su q and h known functions, n is the outward normal vector of the boundary surface, and au  the 

environmental temperature. 

Time-domain discretization: 

Integrating the field equation (3.15) w r t ' 't  and using condition (3.16), we obtain  

2

0

0

( , , ) ( , ) ( , . )

t

u x y t cu x y K u x y F d        
  

                                                                     (3.20)

                                                            

 

The Integral equation cannot be calculated analytically, so to approximate the temperature ( , , )u x y t by 

given functions, divide the time domain  0,T  into M equal intervals  1,m mt t  , where   

T is a given time. We can approximate ( , , )u x y t as a linear function of time variables as  

     1( , , ) ( , ) , , /m m m mu x y t u x y u x y u x y t t t
          

                                                         (3.21)
                                                    

 

Where 
T

t
M

 
 

Putting (3.21) into (3.20), we get 

 2

1

0

( , , ) ( , ) { ( , ) ( , ) ( , ) ( ) / } ( , , )

t

m m m m mcu x y t cu x y K u x y u x y u x y t t F x y d    
         

                         (3.22)  

 

Let 1mt t  then equation (3.22) becomes   

    2

0 1 ( , ) 0,1,2,..., 1m mk K c u F x y m M      
                                                         

(3.23)
                                                    

 

Where 
0 / 2k t   and  
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     
1

2, , , ,
m

m

t

m m

t

F x y F x y t dt tK u x y


  
                                                                            

(3.24)

                                                                  

 

Hence, the related boundary conditions become; 

   1 1, , ,m s mu x y u x y t          (On 1 )
    

                                                                                 (3.25)
                           

   

1
1( , , )m

m

u
K q x y t

n





 


       (On

2 )                                                                                        (3.26)                         

 1
1 1, ,m

m a m

u
K h u u x y t

n


 


    

  (On
3 )                                                                          (3.27)                       

Finite element formulation: 

The finite element formulation related to (3.23) to (3.27) is based on an extended variational principle. It can 

be stated as 

 
1

0
2 3

22

2 2

0 02 2

0 1

1

2

( , , ) ( , , )

m m
m m m

m m m m m m m

u u
u k K cu dx dy k hu ds

x y

k q x y t u ds k hu x y t u ds F u dx dy stationary

 
 


  

        
                      

   

 

  
                          

(3.28)

       
The Finite Element method is applied to obtain the numerical solution of (3.28). For this the domain 

 
is 

divided into a number of elements. For each element, the unknown function 
mu may be obtained by 

                                            

 
1

,
N

i

m i m

i

u N x y u



        

                                                                    (3.29) 

Where 
iN is the shapes function, 

i

mu the nodal value of  ,mu x y in the element, N is the number of nodes 

in an element. In this work, a 4-node quadrilateral element is used and 
iN is a linear function of x and y . 

Substituting (3.29) in (3.28), we get 

        1/ 2
T Te e

m m m me e e
e

u u K u u G   
   

Where e is the element number, 
eK is the stiffness matrix and 

eG the equivalent nodal force vector, which 

gives to 

3
0 e

e

TT

e T TN N N N
K k K cN N dx dy hN ds

x x y y


 

            
           

              
   

2 3
0 0 1e e

e

e T T T

a mG k N q ds k hN u ds N Q dx dy
  

       

Where 1 1 2 2 3 3, , ,e e e e e e             

Here 
e

e   denotes the entire boundary of element e . 

 

4. Haar wavelet collocation method for the numerical solution of parabolic 
equations 

Consider the parabolic equation of the form (3.1) with the given conditions, let us assume that 

                                                                  
1

( , ) ( )
N

i i

i

u x t a h x


                                                                    (4.1) 

 where ia ’s, 1, 2,...,i N
 are Haar coefficients to be determined and & '

 are differentiations with respect 

to  &t x  respectively.  

Integrating the equation (4.1) w. r. t. t  from st  to t , we get 
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1

( , ) ( ) ( ) ( , )
N

s i i s

i

u x t t t a h x u x t


   
 

                               (4.2) 

Where st   is the initial time and st t t    is the time interval 

Integrating the equation (4.2) twice w. r. t. x  from 0  to x , we get 

                                          
1

( , ) ( ) ( , ) (0, ) (0, )
N

i i s s

i

u x t t a Ph x u x t u t u t


       
 

                   (4.3) 

         
1

( , ) ( ) ( , ) (0, ) (0, ) (0, ) (0, )
N

i i s s s

i

u x t t a Qh x u x t u t xu t xu t u t


       
 

                     (4.4)      

Put 1x   in (4.4) and by using given conditions we get 

                          
2 2 1 1

1

(0, ) (0, ) ( ) ( ) ( ) ( ) ( )
N

s i i s s

i

u t u t g t t a Ch x g t g t g t


      
 

Then equation (4.4) becomes 

                                

1 1

1

2 2 1 1

1

( , ) ( ) ( , ) ( ) ( )

( ) ( ) ( ) ( ) ( )

N

i i s s

i

N

i i s s

i

u x t t a Qh x u x t g t g t

x g t t a Ch x g t g t g t





     

 
     

 




                   (4.5) 

Differentiating equation (4.5) w. r. t. t  then we have 

                               

1 1

1

2 2 1 1

1

( , ) ( ) ( , ) ( ) ( )

( ) ( ) ( ) ( ) ( )

N

i i s s

i

N

i i s s

i

u x t a Qh x u x t g t g t

x g t a Ch x g t g t g t





    

 
    

 




                        (4.6) 

Substituting the expressions of (4.2)-(4.6) in (1.1) and by solving we get the Haar wavelet coefficients ia ’s 

using Inexact Newton’s method [21]. Substituting the values of ia ’s in (4.5), to obtain the Haar wavelet 

collocation method (HWCM) based numerical solution of the problem (3.1).   

Convergence analysis of the Haar wavelets:  

Lemma: Assume that 2( , ) ( )u x t L  with the bounded first derivative on (0, 1), then the error norm at 
thj  

level satisfies the following inequality  

3( )
2 2( , ) 2

7

N

j

K
e x t C


  

From the above equation, it is obvious that the error bound is inversely proportional to the level of 

resolution of the Haar wavelet. This ensures the convergence of the Haar wavelet approximation when N is 

increased. 

 

5. Test Problems  

In this section, Implementing the FEM and HWCM as discussed in section 3 and 4 to find the numerical 

solution of some of the parabolic type problems. 

Test Problem 1. First consider the equation of the form 

                                                             , 0 1, 0t xxu u x t                                                 (5.1) 

Subject to the conditions ( ,0) sinu x x , (0, ) 0u t   and (1, ) 0u t    

FEM Solution: 

Comparing the equation (5.1) with (3.1), we get 1, 0, 0a c f   , then from equation (3.2)  
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By putting 
1 2

, 4,h M t
M M

    and by assembling the matrix elements, using 

00, [0,sin / 4,sin 2 / 4,sin3 / 4,0]if u     and omitting the first and last row and columns (due to the 

boundary conditions), we get, 

2

3

4

0.1667 0.0417 0 4.1667 1.9583 0 0.7071

0.0417 0.1667 0.0417 0 4.166 1.9583 1.000

0 0.0417 0.1667 0 1.9583 4.166 0.7071

u

u

u

       
      

       
             

 

Hence the solutions are
2 3 40.1142, 0.1615, 0.1142u u u   . For higher values of N, FEM based 

numerical solutions are presented in the Table 1 & 2 and in the Fig. 1. 

HWCM Solution: 

Assume that 

                                                                  
1

( , ) ( )
N

i i

i

u x t a h x


                                                                  (5.2)  

Integrating the equation (5.2) w. r. t. t  from st  to t , we get 

                                                          
1

( , ) ( ) ( ) ( , )
N

s i i s

i

u x t t t a h x u x t


   
 

                                  (5.3) 

Where st is the initial time and st t t    is the time interval 

Integrating the equation (3.16) twice w. r. t. x  from 0  to x , we get 

                                          
1

( , ) ( ) ( , ) (0, ) (0, )
N

i i s s

i

u x t t a Ph x u x t u t u t


       
 

                      (5.4) 

                       
1

( , ) ( ) ( , ) (0, ) (0, ) (0, ) (0, )
N

i i s s s

i

u x t t a Qh x u x t u t xu t xu t u t


       
 

         (5.5) 

Put 1x   in (5.5) and by using given conditions we get 

                                            1

(0, ) (0, ) 0 ( ) 0 0 0
N

s i i

i

u t u t t a Ch x


      
 

Then equation (5.5) becomes 

                                

          
1 1

( , ) ( ) sin ( )
N N

i i i i

i i

u x t t a Qh x x x t a Ch x
 

 
     

 
                      (5.6) 

Differentiating equation (5.6) w. r. t. then we have 

                             

                     

  1 1

( , ) ( ) 0 ( )
N N

i i i i

i i

u x t a Qh x x a Ch x
 

 
    

 
                            (5.7) 

Substituting the expressions of (5.3) & (5.7) in (5.1) we have  

                                            
1 1 1

( ) ( ) ( ) ( , )
N N N

i i i i i i s

i i i

a Qh x x a Ch x t a h x u x t
  

 
     

 
                 (5.8) 

By solving (5.8) using Inexact Newton’s method [25], we get the Haar wavelet coefficients ia ’s = [38.74, 

2.36, -11.01, 13.74, -10.09, -2.15, 3.34, 10.44, -7.54, -3.28, -1.70, -0.46, 0.89, 2.50, 4.37 & 5.96]. 

Substituting the values of ia ’s in (5.6), to obtain the numerical solution of the problem (5.1) and is presented 

with Finite element method (FEM) and Finite difference method (FDM) solutions in comparison with the 

exact solution 
2

( , ) sintu x t e x   in the Table 1 for N=16 and Fig. 1 for N=32. The error analysis for 

higher values of N is given in Table 2 with 1/t N  .   

Test Problem 2. Now consider the equation of the form 

                                                             , 0 1, 0t xxu u x t                                                 (5.9) 

with the given conditions ( ,0) 0u x  , (0, ) 0u t   and (1, )u t t   
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Due to the initial condition, the FEM gives the trivial solution as discussed in section 3. 

The solution of (5.9) is obtained using the methods presented in section 4, Haar coefficients ia ’s = [4.37, -

2.73, -0.62, -2.89, -0.37, -0.32, -0.73, -2.43, -0.25, -0.14, -0.14, -0.18, -0.28, -0.47, -0.87 & -1.61] and the 

corresponding HWCM solution is presented in comparison with the FDM and exact solution 

 
2 23

3 3
1

1 2 ( 1)
( , ) 6 sin

6

nN
n t

n

u x t x x xt e n x
n

 







      in the Table 3 for N=16 and Fig. 2 for N=32. The 

error analysis for higher values of N is given in Table 4 with 1/t N  . 

 

Test Problem 3. Next consider the equation of the form 

                                                           , 0 1, 0t xxu u u x t                                             (5.10) 

With the given conditions ( ,0) cosu x x , 
2(1 )(0, ) tu t e   and 

2(1 )(1, ) tu t e     

FEM Solution: 

Comparing the equation (5.10) with (3.1), By putting 
1 2

, 4,h M t
M M

    and by assembling the 

matrix elements, using 
00, [0,cos / 4,cos2 / 4,cos3 / 4,0]if u     and omitting the first and last row 

and columns (due to the boundary conditions),we get  

2

3

4

2.1667 0.9583 0 0.3333 0.0833 0 0

0.9583 2.1667 0.9583 0.0833 0.3333 0.0833 1.000

0 0.9583 2.1667 0 0.0833 0.3333 0

u

u

u

       
      

        
             

 

 Hence the solution as 
2 3 40.1749, 0.3087, 0.1749u u u      . For higher values of N, FEM based 

numerical solutions are presented in the Table 5 & 6 and in the Fig. 3. 

HWCM Solution: 

With the given conditions ( ,0) cosu x x , 
2(1 )(0, ) tu t e   and 

2(1 )(1, ) tu t e     

As in previous examples the solution of (5.10) is obtained with the Haar coefficients ia ’s =  

[-7.00, 32.61, 16.55, 15.80, 9.69, 7.85, 8.51, 6.74, 6.17, 4.03, 3.84, 4.02, 4.22, 4.25, 3.85 & 2.80] and the 

corresponding HWCM solution is presented in comparison with the FEM, FDM and exact solution 
2(1 )( , ) costu x t e x   in the Table 5 for N=16 and Fig. 3 for N=32. The error analysis for higher values of 

N is given in Table 6 with 1/t N  . 

Test Problem 4. Consider singularly perturbed convection-dominated diffusion equation 

                                        ( , ), 0 1, 0t xx xu u u x t x t       and 0                               (5.11) 

Where  

 

 

2
(1 )

1

1
( , )

1

x tt t x
x t e

e








 



  




 

with the given conditions ( ,0) 1u x  , 
1

1
(0, ) 1

1

t

e
u t

e










 


 and (1, ) 1u t  .  

As in previous Test Problems, the solution of (5.11) is obtained with the Haar coefficients ia ’s = [30.40, -

58.06, -15.30, -89.37, -19.72, -2.38, -4.32, -144.76, -23.26, -3.17, -1.41, -1.07, -1.40, -3.25, -14.10 & -190.47] 

and the corresponding HWCM solution is presented in comparison with the FDM and exact solution 
(1 )

1

1
( , ) 1

1

x t

e
u x t

e





 




 


 in the Table 7 for N=16 and Fig. 4 for N=32 for 0.08  . The error analysis for 

higher values of N is given in Table 9 with 1/t N   for different . 

Test Problem 5. Now consider the two dimensional problem as,  
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2 u

K u F c
t




  


  , (In  , , 0 3,0 3x y x y      )                           (5.12) 

Where 1, 1.25, 3, 0c K L F     , subject to the boundary and initial conditions as 

                               
0

(0, , ) ( ,0, ) ( , , ) ( , , ) 0; ( , ) 30u y t u x t u L y t u x L t u x y     .         
                

(5.13)
                                               

 

The analytical solution for the above problem is,  

 2 2 2 2

0 0

( , , ) sin( / 3)sin( / 3) exp[ / 3 ]
n

n j

u x y t A n x j y K n j t  
 

 

    

Where     2
4 30 [ 1 1] 1 1 /

n j

n
A nj       

 
. 

Due to the symmetry of the problem, only one quadrant of the solution domain is formed by N N elements 

in the problem. Some results obtained by the proposed method are shown in Tables 11 and 12, where Table 

11 gives the distribution of temperature with analytical solution, Table 12 gives the variation of temperature 

at  , , (1.5,1.5,1.2 )x y t h  with N and Time step t .The Results of HWCM are based on Section 4. The 

distributions of temperature with analytical solution for Test Problem 5 are given in Table 11. 

Test Problem 6. Consider the transient heat conduction problem 
2 2

2 2
1,

T T T

t x y

  
  

  

 
 
                                                          

(5.14)

 
Subject to the boundary conditions, for 0t  , 

    0, , 0, , 0, 0, (1, , ) 0, ( ,1, ) 0
T T

y t x t T y t T x t
x y

 
   

   .                                                       

(5.15)

                                                  

 

And the initial conditions  ( , ,0) 0 ,T x y x y   . Analytical solution 

is    2 2 21
, 1,3,5,...

4
mn

m n m n    . 

We check for 4 4 mesh of linear triangular elements to model the domain, and analyze the Stability and 

accuracy of the Crank-Nicolson method for 0.5which is unconditionally stable. For the higher values of t , 

we take 
max

2 2
0.005176

386.4
cri

t


    . 

 
    The boundary conditions of the problem are given by

5 10 15 20 25 0.0U U U U U    
.
 

Haar wavelet collocation method and Finite element based method numerical solutions are obtained for the 

different values of N of the Test Problem 6, Temperature against mesh N and Time 

step t .   , , 1.5,1.5,1.2x y t   are shown in Table 12. Results of Crank-Nicolson are given in Table 13. 

Test Problem 7; Lastly, Consider the 2-D Parabolic problem,  

                                                   

2 2

2 2
0 , 2

u u u
x y

t x y

  
   

                                                   (5.16)
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Subjected to the conditions,    ( , ,0) sin , 0 , 2; , ,0 0, , , 0.
2

y
u x y x y u x y x y t




 
         

                                

(5.17)

 

With the analytical solution, 

 
2 2

1

4 ( 1)
( , , ) sin 1 1 sin exp

2 2 4

n

n

n x n t
u x y t y

n

  







 
  

            


 
Errors of the Test Problem 7 with 1t   are given in Table 14. 

6. Conclusion  

In this paper, we applied the Haar wavelet collocation method (HWCM) for the numerical solution of 
parabolic set of differential equations. It has been well demonstrated that while applying the nice properties 
of Haar wavelets, the parabolic type partial differential equations can be solved conveniently and accurately 
by using HWCM systematically. In the first Test Problem FEM & FDM gives better results than the HWCM. 
While in the second Test Problem, FDM results closer to HWCM where as FEM gives the trivial solution 
due to the initial condition. Third Test Problem shows that the FEM & FDM gives the poor performance as 
compared to HWCM. In the fourth Test Problem due to the value of   the results are varied, as the value of   
is less than 1, the FDM results are better than HWCM. The HWCM results closer to the FDM as the value of   
is closer to 1. For the higher value of , the HWCM results are better than the FDM. The last four i.e. 2-D Test 
Problem shows the robustness of the HWCM over FEM when compared with exact solution. The main 
advantages of the HWCM are its simplicity and small computation costs: it is due to the sparcity of the 
transform matrices and to the small number of significant wavelet coefficients. Hence the Haar wavelet 
collocation method is competitive in comparison with the classical methods. 
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