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Abstract. This paper deals with the finite-time chaos synchronization of the delay hyperchaotic Lisysten
with uncertain parameters. Based on the finite time stability theory, a control law is proposed to realize finite-
time chaos synchronization for the delay hyperchaotic Lisysten with uncertain parameters. The controller is
simple, robust and only part parameters are required to be bounded. Numerical simulation results are given to
demonstrate the effectiveness of the proposed finite-time chaos synchronization scheme.
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1. Introduction

Chaos synchronization has attracted a lot of attention from a variety of research fields since the seminal
work of Pecora and Carroll [1]. From then on, chaos synchronization has been developed extensively and
intensively due to its potential applications in secure communication [2, 3], complex networks [4-7], biotic
science [8-14] and so on [15].

Nowadays, different techniques and methods have been put forward to achieve chaos synchronization,
for instance, linear and nonlinear feedback synchronization method [16-19], impulsive synchronization
method [20-22], tracking synchronization method [23-25], among many others [26-32].

As time goes on, more and more people began to realize the important role of synchronization time. To
attain convergence speed, many effective methods have been introduced and finite-time control is one of
them. Finite-time synchronization means the optimality in convergence time. Moreover, the finite-time
control techniques have demonstrated better robustness and disturbance rejection properties [33-37].

In this paper, we present a controller to realize finite-time synchronization of he delay hyperchaotic L
systen with uncertain parameters. The controller is robust to parameter uncertainties and simple to be
constructed.

2. Prelininary definitions and lemmas

Finite-time synchronization means that the state of the slave system can track the state of the master
system after a finite-time. The precise definition of finite-time synchronization is given below.
Definition 1. Consider the following two chaotic systems:

X = £(Xp),

X = (X, %,) (1)
where X, X,are two n-dimensional state vectors. The subscripts ‘m’ and ‘s’ stand for the master and slave
systems, respectively. f :R" — R"and h:R" — R"are vector-valued functions. If there exists a constant
T >0, such that
lim||x,, — x| =0,

t>T

and |x,, — x| =0, if t =T, then synchronization of the system (1) is achieved in a finite-time.

Lemma 1 [37]. Assume that a continuous, positive-definite function V (t) satisfies the following differential
inequality:

V(t) <—cV7(t), Vt>t,V(t,)>0. )
Where ¢ > 0,0 <7 <1are all constants. Then, for any given t,, V (t) satisfies the following inequality:
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VEI() V(L) —cL-m)(t - ), tp St<t, 3)
and
V(t)=0,vt>t 4)
with t; given by
1-n
t =t, +V (t) : (5)
cl-n)
Proof. Consider the following differential equation:
X(t) =-cX"(t), X(t,) =V (). (6)

Although this differential equation does not satisfy the global Lipschitz condition, the unique solution of
Eq.(6) can be found as

XET(R) = X7 (ty) —c-nm)(t—t;). (7)
Therefore, form the comparison Lemma, one obtains
VET() SV () — el -m)(t 1), t <t <t, (®)
and
V(t)=0,vt>t

with t; given in (5).
Lemma 2. For a,,a,,...,8, € R, the following inequality holds:

e ®

3. Main results

A chaotic system is extremely sensitive to its initial condition and minor variations of parameters. In
actual situation, the system is disturbed by parameter variation which cannot be exactly predicted. The
consequence of these uncertainties will destroy the synchronization and even break it. Therefore, it is
important and necessary to study the synchronization of systems with uncertainties. In this section, we first
discuss finite-time synchronization of the hyperchaotic LUsystem. Then , we turn the problem to the system
with uncertain parameters.

3.1 chaos synchronization of hyperchaotic Lisystem
The delay hyperchaotic LUsystem (10) [38]was constructed from the Llsystem. The form of the delay
hyperchaotic LUsystem is given by

X =a(X,=X,),

X, = CX,—X X3 + X, (t—7),

Xy = X X,—DX;,

Xy = =04 X — X, (10)
wherea, b, c, a,, a,, T are real positive constants. System (10) is considered as the master system and
the slave system is a controlled system as follows:

Y1 = a(yz_yl) + Uy,

Y, =CY,— VY5 + Y, (t—7) +U,

Y3 = Y1y2_by3 + U,

Ya=—nY; — 0Ly, +U,. (11)
Denote € =Yy, —X,6, =Y, —X,,6; =Y, — X;,6, =y, — X, . Subtracting Eq.(10) from Subtracting Eq.(11)
we can get the following error system:

€ = a(ez_e1) +Up,

€, =Ce,+8;, —€Y; — Y& +€,(t—7)+U,,
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&, =—€€,+te Y, +Ye _be3 +Us,
€, =—o€ — 0,8, +U,. (12)
Our aim is to design a controller that can achieve the finite-time synchronization of the hyperchaotic LU

system (10) and the controlled system (11). The problem can be converted to design a controller to attain
finite-time stable of the error system (12). The design procedure consists of two steps as follows.

Step 1:Letu, = e, +,e, —€, —Sgn(e,) . Substituting the control input u, into the equation of (12)
yields
é, =—€,—sgn(e,) . (13)
Choose a candidate Lyaupunov function

1
V, = Eef. (14)

The derivative of V, along the trajectory of (12) is

1 1 1
. 11,2 i
V, =¢¢€, =e,(-e,—sgn(e,)) =—e, —|e,| <—fe,| =22 (E e,’)? =—22V,2 (15)

From Lemma 1, the system (15) is finite-time stable. That means there is a T, >0 such that
e,=0,e,(t—7)=0provided that t >T, + 7.
Step 2:Select u, =—ae,—-sgn(e) .,  u,=-ke,—y,esgn(ee,y;)—san(e,) with
k>c,u, =-Y,e,s9n(e,y,e,) —sgn(e,) . When t > T, + 7 the last three equations of system (12) become
€ = a(ez_e1) +Up,

€, =C€, 16,6, —€Y; — ¥1& + Uy,

€; =—€€,+e Y, + Y€, —be; +U;, (16)
Choose a candidate Lyaupunov function for the syetem (16) as follows:
1,1, 1,
V2 :Eel +Eez +Ee3 . an

The derivative of V, along the trajectory of (16) is
V,=e€ +e,6,+e6, —aee,+eU, —ae’ +0e,” —ee,y,+e,U,+eVY,e, —be, +e.u,
<aee, +eU, +0e,” —ee,y, +&,U, +€Y,e, + e,
2
= _|e1| - (k - C)ez - (eleZ Ys + |elez Y3|) - |ez| - (|ely2e3| - ely2e3) - |es|
1 1
1 201 201 o5
s-|el|—|e2|—|e3|£—22(ze1 T8 T8 )2 (18)

In proof of (18) we have used lemma 2 at the inequality before the last equation. Then
from Lemma 1, the error system (18) is finite-time stable. That is to saye, =0,e, =0,e, =0 after a finite-

time T,. So when t>T,, yy=X,Y,=X,,Y; =%, Y,=X,, i.e. the slave system (11) finite-timely
synchronizes the master the master system (10) by the controller u, =—ae, —sgn(e,),
U, =—ke, — y,&,59n(e€,Y;) —Sgn(e,) , Us = —Y,&gn(e,y,e;) —sgn(e,) ,
u, =€ +a.e,—e,—sgn(e,) .
3.2 chaos synchronization of hyperchaotic LUsystem with uncertain parameters
This subsection deals with the case of uncertain hyperchaotic LU system. It is valuable because

practical systems often disturbed by different factors. It is assumed that both the master system and the slave
system hold uncertainties. Consider the following hyperchaotic Lsystem with uncertain parameters:

)A(1 = (a+ <]1)()A(2_)A(1) )
X, = (C+ <)X, XX + X, (t—7),

)A(s = )A(i)A(z_(kH‘ <‘3))A( ,
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R, = —a R — %, | (19)
where <; (i=1,2,3) denote the bounded uncertain parameters, i.e |<;|< p,(i=123). The slave system
with uncertain parameters is described by

J, = @+ <,)(9,-9,) + i,

92 =(C+ <)Y, V¥ + Va(t—7) +V,,

93 = 9192_(b+ <]6))73 + Vs,

94 =-a Y, =Y, +V,. (20)
where <, (i=4,56) denote the bounded uncertain parameters in slave system, i.e
|<1i| <p(1=4506) .v,(i=1234) denote the control inputs of the slave system. Denote z=Y—X .
Subtracting Eq.(19) from Subtracting Eq.(20) we can get the following error system:

2, = (a+ < )(2,72) + (<, = <)Y, — V1) + vy,
2, = (C+ <) Z,H(<s = <)Y, + 22, = 2,Y, — 2§, + ,(t = 7) + V,,
2, =-22,+2,Y,+2,¥, —(0+ <3)2, — (<5 — <) ¥, +V,,
1, =—oyZ, — 0,7, +V,. (21)
The design of synchronization for the uncertain system is also divided into two steps.
Step 1: Letv, =7, +,2, — 2, —sgn(z,) . Substituting the control v, into the equation of (21)
yields
2, =-2,—s9n(z,). (22)
As can be seen from the proof of system (13), system (22) is finite-time stable at a finite-time T,.
Step 2: When t>T,+7 ,z,=0,2,(t —7) =0. The last three equations of system (21) become
2, =(a+ <)(Z,72) + (<, = <)Y, = Vo) + v,
2, =(C+ )2+ (<s = <)Y, + 212, = 20Y; — 5, + Vs,
Z;=-1,7, + Z192 +Z, 91 —(b+ <]3)23 - (<]6 - <]3)373 TV, (23)
Now, we take Vi= _L121 - Sgn(zl) _%Zzsgn(zﬂz) _ﬂzyzsgn(zlyz) _/Lsylsgn(mzl) , Where L1 z-a+p,
Azp+a, Lzp+pand L 2p+p
v, =-L,z, —sgn(z,) — 4,¥,59n(¥,2,) — A |Zlys sgn(z,) , where L, >C+p,, 4,2 ps+p,. 4 =1 and
Vs =-Lsz; -4 |2192|Sgn(23) —4,¥:59n(Y525) —sgn(z;) , where Ly 2 b+ p;, A 21,4, 2 p; + ps.
Takev,, Vv, and Vv, in to the system (23) and consider the following candidate Lyaupunov function:
1 1 ., 1.,

VSZEZIZ‘FEZZ +§Z3 . (24)

The derivative of V, along the trajectory of (23) is
V, =2,2, + 2,2, + 2,2,
= _(L1 +a+ <]1)212 _|Z1| _[/11 - (a+ <]1)Sgn(2122):||z122|_[2-2 - (<]4 - <]1)Sgn(z192)]|yzz1|
A+ (<, = 2)san(9,2)][ 2.~ [L, = (C+ €)1z, ~[4, = (<5 = <,)s9n(,2,)][ 9,2, |
_[25 + sgn(§/32122)]|932122| _|22|
_(Ls +b+ <]3)232 _|23|_[2’6 - sgn(zlyZZS)]|ZlyZZS| _[27 + (<]6 - <]3)59n(z3§/3)]|§’323| .

1 1

5.1 1 1 ..
S_|Zl|_|22|_|23|S_22(5212+5222+5232)2 (25)
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From Lemma 1, the error system (23) is finite-time stable. Thus, the uncertain slave syetem (20) can finite-
timely synchronize the uncertain master system (19).
4. Simulation results

In this section, the fourth-order Runge-Kutta method is used to solve the system of differential equations
with step size 0.001 in all numerical simulations. Choose initial conditions of the master

system  (X,(0),X,(0), %,(0), X,(0)) =(-2.0,0.4,2.,3.0) , and of the slave system
(v,(0),,(0), y,(0), y,(0)) =(—2.0,0.4,2.1,3.0) . The parameters of the system are chosen as a =35,

b=3,0=20,a, =2, @, =2, 7 =1,k =20. Fig.1 show the error response of the delay hyperchaotic L{i
system.

Fig.1.Synchronization errors of the delay hyperchaotic LUsystem.

We now turn to the hyperchaotic Lsystem with uncertain parameters, the uncertainties are adopted as
<,=sint : <1,=sinX, : <1,=COS X, : <,=cost , <;=C0S Y,
,=02,,=-34,,=21,,=-2,4,=36 4, =4,4,=2,4,=2,4=1, 4 =114, =2. Fig.2 show

the error responses of the delay hyperchaotic L system with uncertain parameters. We can see the delay
hyperchaotic LUsystem with uncertain parameters have strong robustness to the uncertainties.

0 10 20 30 40
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Fig.2.Synchronization errors of the delay hyperchaotic LUsystem with uncertain parameters.

5. Conclusion

This paper is concerned with finite-time synchronization of the delay hyperchaotic L systen with
uncertain parameters. The presented controller has strong robustness to uncertainties. Not all the boundaries
of the uncertainties are needed for the design of the controller. From the proof process we can see that this
method can be extended to other systems.
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