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Abstract. Based on Lyapunov stability theory, a partial synchronization scheme is proposed to track the 

signal of Hindmarsh-Rose neuron using the Coullet system via only one single controller. Summation for the 

series of error variables are employed to detect the degree of synchronization. Three cases are considered to 

verify the proposed partial synchronization scheme. To demonstrate the effectiveness of the proposed method, 

some simulation results are given. It is found that the arithmetic product of the gain coefficients dominate the 

process and speed of synchronization of the two systems. The larger arithmetic product of the two gain 

coefficients is used, the less time is required. 
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1. Introduction  

Chaos synchronization has attracted the attention of research community since Carroll and Pecora 

discovered it [1]. The problem has been studied due to its potential applications, such as in secure 

communication [2], in biological systems [3], in robotics [4]. Recently, synchronization is applied into 

complex networks [5, 6]. 

Chaos synchronization is to make two chaotic systems identical after transient initial states. For a 

sufficiently strong coupling, complete synchronization of chaotic systems can occur [7]. It is found that 

synchronization is useful and has many potential applications in many domains [2-6], especially, 

synchronization in physical or biological system is a fascinating subject attracting many renewed attention 

[5]. In recent years, synchronizations of coupled neuronal systems, such as Hindmarsh-Rose (HR) 

model[8,9], FitzHugh-Nagumo (FHN) model[10] and Chay model[11], have been studied. 

In general, synchronization research has been focused on two areas: one is related with the employment 

of state observers, where the main applications lie on the synchronization of non-linear oscillators with the 

same structure and order, but different initial conditions and/or parameters[12–16]; the other is about the use 

of control laws to achieve the synchronization between non-linear oscillators with different structures and 

orders, where the variable states of the slave system are forced to follow the trajectories of the master system. 

The second approach can be seen as a tracking problem [17–21]. It transforms the tracking problem to a 

regulation problem with the origin (zero) as the corresponding set point. Some suitable controllers are 

designed to achieve the synchronization. Synchronous motion is often considered as the equality of 

corresponding variables of two systems. In other words, the trajectories of two systems will follow the same 

path after some transient. However, this situation is not the only commonly understood synchronization. 

Other different relationships between coupled systems can be considered synchronous. The concept of partial 

synchronization between two or more similar chaotic systems has been studied [22, 23]. Vieira and 

Lichtenberg [24] showed that partial (in their notation “weak”) synchronization does not necessarily precede 

complete synchronization. Taborov et al. reported on partial synchronization in a system of three coupled 

logistic maps [25]. These results show that partial synchronization depends on the type of basic map 

constituting the coupled system. However, the mechanism of the occurrence of partial synchronization 

remains unclear. 

In this paper, we will study the problem of tracking the Hindmarsh-Rose neuron signal by controlling 

the Coullet chaotic system with improved adaptive control scheme via single controller. In this scheme, 

changeable gain coefficients are introduced into Lyapunov function, which is composed of error variable 

between the outputs and the external standard signal. The controller is approached analytically. The main 
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difference between the scheme and the previous ones is that the gain coefficient in the controller and 

Lyapunov function is changeable with time. Three cases are considered and some numerical simulations are 

presented to demonstrate the effectiveness of the proposed scheme. 

 

2. System description 

2.1. Hindmarsh-Rose neuron system 

The Hindmarsh-Rose (HR) neuronal model was first proposed by Hindmarsh and Rose as a 

mathematical representation of the firing behavior of neurons. It was originally introduced to give a bursting 

type with long inters pike intervals of real neurons [26]. The form of HR system is given by 
2 3

1 1 1 2 3 extx ax bx x x I     , 

2

2 1 2x c dx x   , 

3 1 3( ( ) )x r S x k x   ,                                                                (1) 

where a , b , c , d , r , S , k , extI are real constants. 

2.2. Coullet chaotic system 

The Coullet chaotic system, proposed by Coullet and Arneodo [27], is one of paradigms of chaos for it 

captures many features of chaotic systems. It includes a simple cube part and three simple ordinary 

differential equations that depend on three positive real parameters. The dynamic equations of the system can 

be written as following: 

1 2y y , 

2 3y y , 

3

3 1 1 2 2 3 1y a y a y y y    ,                                                            (2) 

where 1a , 2a  are real constants. 

3.   Control schemes 

In this section, we will propose a systematic design procedure to simulate the bursting activity of HR 

neuron system by using the Coullet system and the control scheme can be approached via an improved 

adaptive track. The mechanism can be understood as partial synchronization between dynamical models. 

This method needs only one single controller. A single control input 1u is added to the second equation of 

system (2) and the first state 1y  of the controlled Coullet chaotic model is used to simulate the dynamical 

properties of the HR neuron system state. Thus, the controlled Coullet chaotic system is given as following 

1 2y y , 

2 3 1y y u  , 

3

3 1 1 2 2 3 1y a y a y y y    ,                                                      (3) 

The error is denoted as  

   1e x y  ,                                                                        (4) 

where x  is one of the observed states of system (1). The error function 
1e x y   will be stabilized to 

certain value when the output variables x  and 1y  is close to each other, which indicates a kind of partial 

synchronization. To realize the partial synchronization between the two systems is now transformed to how 

to choose a control law 1u  and make e  generally converge to zero with time increasing. 

To realize partial synchronization, Lyapunov function is chosen as following: 
2 2( )V e e e    ,                                                             (5) 

where   and   are positive gain coefficients, the over dot denotes the differential variable e  of time. The 

differential coefficient of the above Lyapunov function as shown in Eq.(5) of time is approached by  
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2 2( )( )V e e e e e e       

2 2 2 2( )( )V V e e e e e e            
2 22 2 [ ( ) ] 2 2( )( )V e e e e e e e e e                

22 2 ( ) 2 ( ) 2( )( )V e e e e e e e e e                
22 2( 2 )( )V e e e e e e           .                                                                                          (6) 

 

If the following condition can be achieved 
22( 2 )( ) 0e e e e e e        .                                                (7) 

Then 

     2 0
dV

V
dt

   .                                                                        (8) 

According to Lyapunov stability theory, the errors of corresponding variables will be stabilized to a certain 

threshold. As a result, the observed state x  of system (1) and the salved state 1y  of the system (2) with a 

controller will reach synchronization completely. In the following, three cases will be considered and some 

numerical simulation results will be presented to demonstrate the effectiveness of the proposed scheme. In 

all of following numerical simulations, the fourth-order Runge–Kutta algorithm is used for calculating the 

nonlinear equations with time step h = 0.001. The system parameters are chosen as a = 3.0, b = 1.0, c = 1.0, 

d = 5.0, r = 0.006, S = 4.0, k = 1.6, extI = 3.0, 1a = 5.5 and 2a = 3.5.The initial conditions of the HR system 

and the Coullet system are set to be (0.1, 0.9, 0.8) and (0.1, 0.3, 0.2), respectively. 

Case 1 Simulating the bursting activity of 1x  using 1y .  

In this case, the first state 1y  of the controlled Coullet chaotic system is used to simulate the dynamical 

properties of the chaotic bursting behavior state 1x . Thus, the error of corresponding variable is denoted by 

1 1 1e x y  . According to the formulas (7), the corresponding controller 1u  can be deduced as 

1u 2 2 3 2

1 1 1 1 2 3 1 2(2 3 )( ) ( )extax bx ax bx x x I c dx x          

1 3 3[ ( ( ) )]r S x k x y    2 3 2

1 1 2 3 2 1 12 ( ) ( )( )extax bx x x I y x y           .        (9) 

The evolutions of the outputs of 1x  and 1y , as well as the corresponding error variable 1e , are 

calculated under fixed constants ( =  =0.2) to  demonstrate the effectiveness of the proposed partial 

synchronization scheme. The results are shown in Fig. 1 and Fig. 2.  

 

 

Fig.1. The evolution of 1x  and 1y  at fixed constants ( = =0.2). 
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Fig.2. Synchronization error of 
1e . 

Clearly, the two positive gain coefficients  and   are involved, which will affect the rate of 

synchronization. To detect the degree of synchronization, the summation for the series of error variables are 

employed, which can be described as (10).   

2

1 1

1

( ) ( )
n

i

e e i


 .                                                                         (10) 

The distribution of the summation 1( )e  in the two-gain coefficients phase space ( ,  ) can be 

obtained by numerical method (see Fig. 3). Fig. 3 gives a visualized and vivid explanation for the effects of 

gain coefficients on the systems. It indicates that the larger arithmetic product of the two gain coefficients is 

used and the less time to get synchronization is required. Therefore, the arithmetic product of the two gain 

coefficients dominates the process and speed of synchronization of the two systems. Complete 

synchronization can be realized with short transient period when larger gain coefficients are used (see Fig. 4 

and Fig.5). 

Case 2 Simulating the bursting activity of 2x  using 1y .  

In this case, the state 2x  of the HR neuron system will be considered as the drive signal, and the first 

state 1y  of the controlled Coullet chaotic model is used as the salve signal to simulate the chaotic bursting 

behavior. Thus, the error of is denoted by 2 2 1e x y  . Accordingly, the corresponding controller 2u  can be 

derived as 

2u 2 3 2

1 1 1 2 3 1 22 ( ) ( )extdx ax bx x x I c dx x          

3y 2 2

1 2 2 2 12 ( ) ( )( )c dx x y x y         .                                       (11) 

The evolutions of 2x  and 1y , as well as the corresponding error variable 2e , are calculated under fixed 

constants ( = =0.2) to  demonstrate the effectiveness of the proposed partial synchronization. The results 

are shown in Fig. 6 and Fig. 7. 

The distribution of the summation 2( )e  in the two-gain coefficients phase space ( ,  ) can be 

obtained by numerical method (see Fig. 8). Fig. 8 gives a visualized and vivid explanation for the effects of 

gain coefficients in the systems. It indicates that the larger arithmetic product of the two gain coefficients is 

used and the less time to get synchronization is approached. Therefore, the arithmetic product of the two gain 

coefficients dominates the process and speed of synchronization of the two systems. Complete 

synchronization can be realized with short transient period when larger gain coefficients are used (see Fig. 9 

and Fig. 10). 
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Fig.3. The distribution of 1( )e  as described in Eq. (10) in the two-gain coefficients phase space ( ,  ), 

the summation of errors function is calculated from t=100 to 500 time units (t = i*h). 

 

Fig.4. The evolutions of 
2

1e  when  = 0.2 and  =0.1, 0.2, 0.4，respectively. 

 

Fig.5. The evolutions of 
2

1e  when  = 0.2 and  =0.1, 0.2, 0.4，respectively. 
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Fig.6. The evolution of 2x  and 1y  at fixed constants ( = =0.2). 

 

Fig.7.  Synchronization error of  2e . 

 

Fig.8. The distribution of 2( )e  in the two-gain coefficients phase space ( ,  ), the summation of errors 

function is calculated from t=100 to 500 time units (t = i*h). 
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Fig.9. The evolutions of 
2

2e  when  = 0.2 and  =0.1, 0.2, 0.4，respectively. 

 

Fig.10. The evolutions of 
2

2e  when  = 0.2 and  =0.1, 0.2, 0.4，respectively. 

Case 3 Simulating the bursting activity of 3x  using 1y .  

In this case, 1y  is used to simulate the state 3x  of the HR neuron system. The error is denoted by 

3 3 1e x y  . According to the conditions in (7), the controller can be written as  

3u 2 3 2

1 1 2 3 1 3( ) [ ( ) ]extrS ax bx x x I r S x k x         

3y 2

1 3 2 3 12 [ ( ( ) ) ] ( )( )r S x k x y x y         .                                (12) 

The evolutions of the outputs of 3x  and 1y , as well as the corresponding error variable 3e , are 

calculated under fixed constants ( =  =0.2) to  demonstrate the effectiveness of the proposed partial 

synchronization scheme. The results are shown in Fig. 11 and Fig. 12.  

The distribution of the summation 3( )e  in the two-gain coefficients phase space ( ,  ) can be 

obtained by numerical method (see Fig. 13). Fig. 13 gives a visualized and vivid explanation for the effects 

of gain coefficients in the systems. It indicates that larger arithmetic product of the two gain coefficients is 

used and less time to get synchronization is approached. Therefore, the arithmetic product of the two gain 

coefficients dominates the process and speed of synchronization of the two systems. Complete 

synchronization can be realized with short transient period when larger gain coefficients are used (see Fig.14 

and Fig. 15). 

4. Conclusion  

An improved scheme is proposed to control the nonlinear dynamical system to generate any selectable 

signals by tracking the external standard signal within short transient periods. The changeable gain 

coefficient is introduced into the error function or Lyapunov function and the controller is adaptive with the 
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variable of the system. The power consumption of controller is estimated according to the dimensionless 

model. It is found that larger power is spent when the external standard signal to be tracked is within larger 

amplitude and/or high angular frequency. It could be useful for designing the controller in circuit and 

generating useful signals from the signal generators.  

 

Fig.11 .The evolution of 3x  and 1y  at fixed constants ( =  =0.2). 

 

Fig.12. Synchronization error of 3e . 

 

Fig.13. The distribution of 3( )e  in the two-gain coefficients phase space ( ,  ), the summation of errors 

function is calculated from t=100 to 500 time units (t = i*h). 
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Fig.14. The evolutions of 
2

3e  when  = 0.2 and  =0.1, 0.2, 0.4，respectively. 

 

Fig.15. The evolutions of 
2

3e  when  = 0.2 and  =0.1, 0.2, 0.4，respectively. 
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