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Abstract. In this paper, an application of the variational iteration method (VIM) is presented. This 

technique provides a sequence of function which converges to the exact solution of the problem. The main 

property of the method is in its flexibility and ability to solve nonlinear equation accurately and conveniently. 

For solving the discussed inverse problem, at first we transform it into a nonlinear direct problem then use 

the proposed method. Numerical examples are examined to show the efficiency of the technique. 

Keywords: VIM; inverse parabolic problem; unknown source parameter; additional condition. 

1. Introduction  

In this paper, VIM is presented as an alternative method for simultaneously finding the time-dependent 

source parameter and the temperature distribution in one-dimensional heat equation. 

Consider the parabolic equation: 

( ) ( , ); 0 , 0 ,t xxu u a t u f x t x t T      
                                                          (1)  

with unknown coefficient ( )a t . Impose the initial and boundary condition:   

                 ( ,0) ( ); 0 ,u x x x                                                                              (2) 

(0, t) (t); 0 ,u g t T                                                                                  (3) 

and the additional condition: 

(0, t) (t); 0 ,xu E t T                                                                              (4) 

where 0T   is final time and  , f , g and  E are known functions. If u  is a temperature then (1)-(4) 

can be regarded as a control problem finding the control ( )a t  such that the internal constraint is satisfied. If 

( )a t  is known then direct initial-boundary value problem (1)-(4) has a unique smooth solution (x, t)u  [4]. 

For the existence and uniqueness of solutions of these inverse problems and also more applications, the 

reader can refer to [3, 4, 6, 12, 13, 17]. 

The VIM is a powerful tool to searching for approximate solutions of nonlinear equation without 

requirement of linearization or perturbation. This method, which was first proposed by He [7, 8] in 1998, has 

been proved by many authors to be a powerful mathematical tool for various kinds of nonlinear problems [1, 

2, 15, 19]. The interested reader can see [9, 10, 14] for some other applications of the method. 

The rest of this paper is organized as follows: In Section 2, the variational iteration method is reviewed. 

In Section 3, application of the VIM is presented to solve the discussed inverse problem. In Section 4, 

several numerical examples are presented to confirm the accuracy and efficiency of the new method and 

finally a conclusion is presented in Section 5. 

2. Basic idea of the variational iteration method 

To illustrate its basic concepts of VIM, we consider the following general nonlinear differential 

equation: 

                 ( ) ( ) ( ),Lu t Nu t f t                                                                                        (5)                                                               

where L  and N are linear and nonlinear operators, respectively and f  is source or sink term. 

According to VIM [1, 2, 7-10, 14, 15, 19], we can write down following correction functional: 

           
1

0
( ) ( ) ( , ){ ( ) ( ) ( )} ; 0,

t

n n n nu t u t t Lu Nu f d n                                         (6)   
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where   is general Lagrange multiplier [11], which can be identified optimally via the variational 

theory [7, 8]. The subscript n  denotes the n th order approximation and is considered as restricted variation 

[7, 8] which means 0nu  . 

It is required first to determine the Lagrange multiplier. Employing the restricted variation in correction 

functional and using integration by part makes it easy to compute the Lagrange multiplier, see for instance 

[8]. 

For linear problems, its exact solution can be obtain by only one iteration step due to the fact that, no 

nonlinear exist so the Lagrange multiplier can be exactly identified. 

Assuming 0 ( )u t  is the solution of 0Lu  . Having   determined, then several approximations 1( )nu t ; 

0,n   can be determined. 

We will rewrite equation (6) in the operator form as follows: 

 

1( ) [ ],n nu t A u 
 

where the operator A  takes the following form: 

 

0
[ ( )] ( ) (t, ){ ( ) ( ) ( )} .

t

A u t u t Lu Nu f d        
 

Theorem. Let ( , . )X  be a Banach space and :A X X  is a nonlinear mapping and suppose that: 

[ ] [ ] , , ,A u A u u u u u X     

for some constant  . Then, A  has a unique fixed point. Furthermore, the sequence (6) using VIM with an 

arbitrary choice of 0u X , converges to the fixed point of A  and 

2

1 0

1

.
n

j

n m

j m

u u u u 


 

     

Proof: See [16]. 

Consequently, the exact solution may be obtained by using the Banach's fixed point Theorem [16]: 

lim .n
n

u u


  

According to the above theorem, a sufficient condition for the convergence of the VIM is strictly 

contraction of A . Furthermore, sequence (6) converges to the fixed point of A , which is also the solution of 

the equation (5). Also, the rate of convergence depends on . 

3.  Application 

In this section, the VIM is used for solving the problem (1)-(4). In order to solve this problem by using 

VIM, we require transforming the problem with only one unknown function. This transformation is proposed 

by Cannon, Lin and Xu [5]. According to this procedure the term ( )a t  in (1) is eliminated by introducing 

some transformation and system (1)-(4) is written in the canonical. 

This procedure is as follows: the term ( )a t  in (1) eliminated by introducing the following 

transformation: 

0
( ) exp{ a( ) },

t

r t s ds                                                                            (7) 

( , ) ( , ) ( ).w x t u x t r t                                                                             (8) 

Thus, we have: 

( , ) ( )
( , ) , ( ) .

( ) ( )

w x t r t
u x t a t

r t r t


                                                          (9) 

We reduce the original inverse problem (1)-(4) to the following auxiliary direct problem: 

( ) ( , ); 0 , 0 ,t xxw w r t f x t x t T                                             (10)      

w( ,0) ( ); 0 ,x x x                                                                 (11)               

w(0, ) ( ) r(t); 0 ,t g t t T                                                                (12)             

Subject to: 
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(0, )
( ) ; 0 .

( )

xw t
r t t T

E t
                                                                (13) 

This system can be solved by VIM. Now, we can write following correction functional: 

1
0

(0, )
( , ) ( , ) ( , ){ ( , ) ( , ) ( , )} ; 0.

( )

t
x

n n n nxx

w
w x t w x t t w x w x f x d n

E



     


       

Making the above correction functional stationary, note that ( , ) 0nw x t  , we 

have: 1
0

(0, )
( , ) ( , ) ( , ){ ( , ) ( , ) ( , )} .

( )

t
x

n n n nxx

w
w x t w x t t w x w x f x d

E



        


      

Therefore: 

1
0

( , ) ( , ) ( , ){ ( , )} .
t

n n nw x t w x t t w x d           

Thus, its stationary condition can be obtained as follow: 

( , ) 0,

1 ( , ) | 0.t

t

t 

 

  

 

 

 

Therefore ( , ) 1t    .  

Note that ( ,0) 0nw x  . Now, the following iteration formula can be obtained as:    

    1
0

(0, )
( , ) ( , ) { ( , ) ( , ) ( , )} ; 0.

( )

t
x

n n n nxx

w
w x t w x t w x w x f x d n

E



   


                     (14)                        

 

According to Adomian's decomposition method in t -direction which is equivalent to the VIM in t - 

direction [18], we choose its initial approximate solution as 0( , ) ( ,0)w x t w x . Having lim n
n

w w


  

determined [16], then the unknown (u,a)  can be calculated by using the equation (9). If the exact solution of 

w  is not obtainable, it was found that a few number of approximations can be used for numerical purposes. 

4. Numerical results 

In this section we report some results of our numerical calculations using the numerical procedures 

described in the previous section. 

Example 1:  
We consider the following inverse problem: 

( ) exp(x t); 0, 0 1,t xxu u a t u x t        

u(x,0) exp(x); 0,x   

u(0, t) exp(t); 0 1,t    

u (0, t) exp(t); 0 1.x t     

The true solution is u(x, t) exp(x t)   while (t) 1a  . 

Let 0w (x, t) w(x,0) exp(x)  . 

By using the equation (14), we obtain: 

1w (x, t) exp(x),  

2 1w (x, t) (x, t).w  

Thus: 

lim exp(x).n
n

w w


   

Therefore, we obtain a series which is convergent to the exact solution of the problem (10)-(13). 

Also from (13), we can obtain: 

(t) exp( t).r    

Thus, using (9) we obtain: 

(x, t) exp(x t),u    
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(t) 1,a   

which is equal to the exact  solution of this example. From this example, it can be seen that the exact solution 

is obtain by using one iteration step only. 

Example 2: 

We consider the following inverse problem: 

( ) ; 0, 0 1,t xxu u a t u x t      

u(x,0) cos(x) sin(x); 0,x    

2

u(0, t) exp( t); 0 1,
2

t
t     

2

u (0, t) exp( t); 0 1.
2

x

t
t      

The true solution is 
2

u(x, t) exp( t)(cos(x) sin(x))
2

t
    while (t) ta   . 

Let 0w (x, t) w(x,0) cos(x) sin(x).    

By using the equation (14), we obtain: 

1w (x, t) (cos(x) sin(x)) t(cos(x) sin(x)),     

2

2

1
w (x, t) (cos(x) sin(x)) t(cos(x) sin(x)) t (cos(x) sin(x)),

2
       

2 3

3

1 1
w (x, t) (cos(x) sin(x)) t(cos(x) sin(x)) t (cos(x) sin(x)) t (cos(x) sin(x)),

2 6
         

 

21 1
w (x, t) (cos(x) sin(x)) t(cos(x) sin(x)) t (cos(x) sin(x)) ( 1) t (cos(x) sin(x)).

2 !

n n

n
n

           

We know that 
21 1

w (x, t) (1 t t ( 1) t )
2 !

n n

n
n

      is the n order Taylor series of exp( t) . Now 

using the fact that: 

lim ,n
n

w w


  

that leads to the exact solution: 

w(x, t) exp( t)(cos(x) sin(x)).    

Therefore, we obtain a series which is convergent to the exact solution of the problem (10)-(13). 

Also from (13), we can obtain: 
2

(t) exp( 2 t).
2

t
r   

 
Thus, using (9) we obtain: 

2

u(x, t) exp( t)(cos(x) sin(x)),
2

t
  

 
(t) t .a    

This is equal to the exact solution of this example. 

Example 3: 

Solve the following inverse problem: 
2( ) ( 2 t) exp(t) cos( x); 0, 0 1,t xxu u a t u x t         

u(x,0) cos( x); 0,x x    

u(0, t) exp(t); 0 1,t    

u (0, t) exp(t); 0 1.x t      

The true solution is u(x, t) exp(t)(x cos( x))   while (t) 1 2ta   . 
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We can select 0w (x, t) w(x,0) cos( x)x    ; by using the given initial value. According to (14), 

one can obtain the successive approximations w (x, t)n  of  w(x, t)  as follow: 

2

1w (x, t) ( cos( x)) t ( cos( x)),x x      

4
2

2w (x, t) ( cos( x)) t ( cos( x)) ( cos( x)),
2

t
x x x         

4 6
2

3w (x, t) ( cos( x)) t ( cos( x)) ( cos( x)) ( cos( x)),
2 6

t t
x x x x            

 
4 2

2w (x, t) ( cos( x)) t ( cos( x)) ( cos( x)) ( cos( x)).
2 !

n

n

t t
x x x x

n
             

We know that
4 2

2(1 t )
2 !

nt t

n
     is the n th order Taylor series of 

2exp(t ) . 

Now using the fact that: 

lim ,n
n

w w


  

that leads to the exact solution: 
2(x, t) exp(t )(x cos( x)).w    

Therefore, we obtain a series which is convergent to the exact solution of the problem (10)-(13). 

Also from (13), we can obtain: 
2(t) exp(t t).r    

Thus, using (9) we obtain: 

u(x, t) exp(t)(x cos( x)),   

(t) 1 2ta    

which is equal to the exact  solution of this example. 

Example 4: 

We solve the problem (1)-(4) as: 

( ) 1 sin(t)(x t); 0, 0 1,t xxu u a t u x t         

u(x,0) ; 0,x x   

u(0, t) t; 0 1,t    

u (0, t) 1; 0 1.x t      

for which the exact solution is u(x, t) x t  and (t) sin(t)a  . 

We can select 0w (x, t) x ; by using the given initial value. According to (14), one can obtain the 

successive approximations w (x, t)n  of w(x, t) as follow: 

1w (x, t) cos(t)(x t) sin(t),t     

2

2

1 1 1 1
w (x, t) cos (t)(x t) sin(t)cos(t).

4 2 2 4
t x       

And the rest of the components of iteration formula (14) are obtained using the Maple 13Package.  Now 

form (13), we can obtain the successive approximations (t)nr of (t)r  as: 

(0, t)
(t) .

(t)

nxx
n

w
r

E
   

Finally, using (9), we can obtain the successive approximations (x, t)nu  of (x, t)u  and (t)na of (t)a  as 

following: 

(x, t) (t)
(x, t) , (t) .

(t) (t)

n n
n n

n n

w r
u a

r r


   
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The obtained numerical results are summarized in Tables 1 and 2. In addition, the graphs of the error 

functions 8u u  and 8a a  are plotted in Figure 1. 

 

Table1. Absolute errors of nu  at 0.5t   for Example 4. 

x  
2u u  4u u  6u u  8u u  10u u  

0.0 8.856E-4 5.966E-7 2.066E-10 4.234E-14 5.600E-18 

1.5 8.856E-4 5.966E-7 2.066E-10 4.234E-14 5.600E-18 

3.0 8.856E-4 5.966E-7 2.066E-10 4.234E-14 5.600E-18 

4.5 8.856E-4 5.966E-7 2.066E-10 4.234E-14 5.600E-18 

6.0 8.856E-4 5.966E-7 2.066E-10 4.234E-14 5.600E-18 

7.5 8.856E-4 5.966E-7 2.066E-10 4.234E-14 5.600E-18 

9.0 8.856E-4 5.966E-7 2.066E-10 4.234E-14 5.600E-18 

 

  Table 2: Absolute errors of na  for Example 4. 

t  
2a a  4a a  6a a  8a a  10a a  

0.2 4.026E-4 1.334E-7 1.765E-10 1.300E-13 1.001E-18 

0.4 1.312E-3 6.817E-7 1.416E-10 1.575E-13 1.081E-18 

0.6 1.024E-2 2.607E-5 2.651E-8 1.444E-11 1.896E-15 

0.8 4.442E-2 3.425E-4 1.050E-6 1.725E-9 1.763E-12 

 

 

                             

a) 8(x, t) (x, t)u u  on the [1,10]x   and [0,1]t  .                      b) 8(t) (t)a a on the [0,1]t  . 

Figure 1. Graph of absolute error by using VIM by for Example 4. 

5. Conclusion  

In the present work, we have demonstrated the applicability of the VIM for solving a class of parabolic 

inverse problem. The illustrative examples show the efficiency of the method. This method provides the 

solutions of the problems in closed form, Moreover, by using only one iteration step; we may get the exact 

solution. It can be concluded that the VIM is a very powerful and relatively easy tool for solving inverse heat 

problem. 
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