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Abstract. In this paper, a method is employed to approximate the solution of  two-dimensional nonlinear 

Volterra integro-differential equations (2DNVIDEs) with supplementary conditions. First, we introduce two-

dimensional Legendre polynomials, then convert 2DNVIDEs to the two-dimensional linear Volterra integro-

differential  equations (2DLVIDEs). Using this properties and collocation points, reduce it to the system of 

algebraic equations. Finally, some numerical examples are given to clarify the efficiency and accuracy of the 

present method. 
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1. Introduction  

Generally, real-world physical problems are modelled as differential, integral and integro-differential 

equations. Since finding the solution of these equations is too complicated, in recent years a lot of attention 

has been devoted by researchers to find the analytical and numerical solution of this equations. In [1] authors, 

have applied Legendre polynomials to solve two-dimensional Volterra integral equations. While in [2] 

Homotopy Perturbation and Differential transform methods have been chosen. Iterative methods have been 

used in [3] to solve two-dimensional nonlinear Volterra-Fredholm integro-differential equations. In [4] the 

authors, have applied the differential transform method for the system of two-dimensional nonlinear Volterra 

integro-differential equations .The Tau method has been developed for the numerical solution of two-

dimensional linear Volterra integro-differential equations in [5] and Block-pulse functions have been used 

for solve two-dimensional Volterra integro-differential equations by the authors of [6]. 

On the other hand, 2DNVIDEs have interesting applications in Physics, Mechanics and applied sciences. 

For this reason, in this paper, we obtained numerical solution of two-dimensional nonlinear Volterra integro-

differential equations with given supplementary conditions. To this end, we replace the differential and 

integral parts of 2DLVIDEs by Legendre polynomials and then convert it to a corresponding system of 

algebraic equations. In a similar manner, we transform the supplementary conditions to a algebraic system of 

equations. Finally, by combining these two systems of algebraic equations, we obtain a system of linear 

algebraic equations and solve it to obtain an approximate solution of the problem. 

This paper is organized as follows. In Section 2, we describe properties of Legendre polynomials. In 

section 3, we explain numerical solution 2DLVIDEs by Tau method. Numerical examples are given in 

section 4 to evaluation of our method. Finally, conclusions are given in section 5.  

2. Properties of Legendre polynomials 

2.1. Definition the Legendre functions 

 The Legendre polynomials are defined as [7]: 
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So the shifted Legendre polynomials are defined as: 
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2D shifted Legendre functions are defined on  ( ][0,][0,=),( Tltx  Tl,,  are finite constants) 

as :]8[  
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here nm LL ,  are the well-known Legendre functions respectively of order m and n. 

2D shifted Legendre functions ),( txmn are orthogonal with each other as: 
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Suppose that )(= 2 LX , the inner product in this space is defined by 

 ,),(),(>=,<
00

dtdxtxgtxfgf
lT

                                                  (2) 

and the norm is as follows: 
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be the set of 2D shifted Legendre functions and 
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and ),( txf be an arbitrary function in X. Since NNX  is a finite dimensional vector space, f  has a unique 

best approximation NNNN Xf   [9],  such that 

22
, gfffXg NNNN  . 

Moreover since NNNN Xf   there exist unique coefficients NNfff ,...,, 0100  such that 
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Similarly, any function ),(),,,( 2 Lzytxk  can be expanded in terms of 2D shifted Legendre 

functions as 

 ,),(),(),,,( zyKtxzytxk T                                                 (3) 
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2.2. Operational matrices of integration 

The integration of the vector ),( tx  is already defined above can be approximately obtained as [8]: 
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Where ],0[],,0[ Ttlx    and 1Q   is the )1()1()1()1(  NNNN  operational matrix of 

integration, such that 21, PP  are the operational matrices of 1D shifted Legendre polynomials,  respectively 

defined on ],0[ l  and ],0[ T  as follows ]10[ :  

 

,

0
12

1
0000

12

1
0

12

1
000

000
3

1
0

3

1
000011

2
=1






































N

NN

l
P











 

,

0
12

1
0000

12

1
0

12

1
000

000
3

1
0

3

1
000011

2
=2






































N

NN

T
P











 

and   denotes the kronecker product defined for two arbitrary matrices A and B as :[11]  

.)( BaBA ji  

Analogously, we write  
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 ,),(),( 3
0

txQtdtx
t

                                                 (6) 

where 2Q  and 3Q  are 1)(1)(1)(1)(  NNNN  matrices of the form as:  
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where I and 0 are the identity and zero matrix of order N+1, respectively. 

3. Numerical solution  

Consider a 2DNVIDE of the form: 

),(),(),(),( txutxutxutxu tttxxx                                                              (7) 
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with the supplementary conditions:  
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where 1010 ,,,),,(),,,,( txRzytxK are known continuous functions and u  is the unknown function to 

be find and  F is a nonlinear function in u . 

In this section, we introduce a numerical method for the solution of nonlinear 2D Volterra integro-

differential equations of the form (7). For this purpose, assume that ),(=)),(,,( txtxutxF  , so that Eq.(7) 

convert to:  
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on the other hand, using equation above, we derive: 
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from Eqs. (10-12), we have: 
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by using Eqs. (5) and (10), we obtain: 
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using Eqs. (10), (17) and (18), we get :                                                   
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from Eqs. (10) and Eqs. (19-21) we obtain: 
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Substituting Eqs.(10), (23) and (24) into Eq. (9), we derive: 
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Using Eqs. (13), (16) and (22), we have:  
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Substituting Eqs. (27) in Eq. (26), we get:  
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which is a system of algebraic equations. 

On the other, we have:  
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of algebraic equations. By solving it, we obtain an approximate solution of the problem. 

 

4. Numerical examples 

In this section, some examples are presented to evaluation of the present method. Note that as 

mentioned previously, in all case any non-polynomials term were replace by the Legendre polynomials of 

degree N and all computations have been done by programming in Matlab 2012. 

Example1. Consider the nonlinear 2D Volterra integro-differential equation [6]:  
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with supplementary conditions as:  
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The exact solution is )(=),( tsinxtxu . 

We substitute ),(=),( 2 txutx  to get a linear equation and then apply the present method  on  it.  

Table 1 shows  the numerical results obtained here and the numerical results of [6] for this example.  

Table 1: Numerical results for Example 1. 

),( tx  2=N  3=N  m=16[6] 

)(0.01,0.01  5106.14   7103.53   7105.13   

)(0.02,0.02  4101.06   6106.23   6101.30   

(0.1,0.1)  5103.61   6108.94   5105.56   

(0.2,0.2)  4105.21   6105.86   3102.97   

 
Example 2. In this example we consider the following linear two-dimensional integro– differential 

equation:  

),,(=),(),(),(
00

txgdzdyzyutxutxu
xt

ttxx   

1],[0,1][0,),(,2
6

1
=),( 23  txttxtxg  

with supplementary conditions as: 

.0=)(0,,=0),(0,=)(0,0,=0),( 2 tuxxutuxu tx  
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Here, the exact solution is txtxu 2=),(  . The numerical results with 1=N are shown in Table 2 and                    

the exact solution of this equation is obtained with N=2. 

 

Table 2: Numerical results for Example 2. 

)2,2(),( lltx   Present method with 

1=N  

1l  2104.1   

2l  3105.2   

3l  3107.2   

4l  3106.8   

5l  3104.4   

6l  3102.5   

 

Example3. For the end example, consider the following equation [6, 12] 

  
t x

ttxx txtxgdzdyzyutxtxutxu
0 0

2 ],1,0[,),,(),(),(),(                                                               

where 

,
2

1

2

1
),( 44 tt textxxetxg   

with supplementary conditions as:  

.)1,(,0),0( 1exutu x   

The exact solution of this problem is ( , ) .tu x t xe  The absolute values of the errors for this problem 

are shown  in Table 3 and the absolute values of the errors for this problem of [6,12] are shown in Table 4. 

The absolute error function for N= 4, 5 is plotted in Figs. 1, 2. 

 

Table 3: Numerical results for Example 3. 

       

       

      

       

      

 

Table 4: Numerical results [6, 12] for Example 3. 

 ]12[),(5,5 txe  ]12[),(6,6 txe  ]6[32m  ]6[64m  
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Fig. 1: Plot of the function ),( txeN  with N = 4 for Example 3. 

 

Fig. 2: Plot of the function ),( txeN  with N = 5 for Example 3. 

5. Conclusion 

We introduced a new method for solving two-dimensional nonlinear Volterra integro-differential 

equations, based on expanding the solution in terms of two dimensional Legendre polynomials. As the 

numerical results have shown, comparing the present method and other numerical methods, shows that the 

present method is more accurate. Also, it will be possible to investigate the numerical solution of two 

dimensional linear and nonlinear Fredholm integro- differential equations. 
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