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Abstract. In this paper, a method is employed to approximate the solution of two-dimensional nonlinear
Volterra integro-differential equations (2DNVIDESs) with supplementary conditions. First, we introduce two-
dimensional Legendre polynomials, then convert 2DNVIDEs to the two-dimensional linear Volterra integro-
differential equations (2DLVIDES). Using this properties and collocation points, reduce it to the system of
algebraic equations. Finally, some numerical examples are given to clarify the efficiency and accuracy of the
present method.
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1. Introduction

Generally, real-world physical problems are modelled as differential, integral and integro-differential
equations. Since finding the solution of these equations is too complicated, in recent years a lot of attention
has been devoted by researchers to find the analytical and numerical solution of this equations. In [1] authors,
have applied Legendre polynomials to solve two-dimensional Volterra integral equations. While in [2]
Homotopy Perturbation and Differential transform methods have been chosen. Iterative methods have been
used in [3] to solve two-dimensional nonlinear Volterra-Fredholm integro-differential equations. In [4] the
authors, have applied the differential transform method for the system of two-dimensional nonlinear Volterra
integro-differential equations .The Tau method has been developed for the numerical solution of two-
dimensional linear Volterra integro-differential equations in [5] and Block-pulse functions have been used
for solve two-dimensional Volterra integro-differential equations by the authors of [6].

On the other hand, 2DNVIDEs have interesting applications in Physics, Mechanics and applied sciences.
For this reason, in this paper, we obtained numerical solution of two-dimensional nonlinear Volterra integro-
differential equations with given supplementary conditions. To this end, we replace the differential and
integral parts of 2DLVIDEs by Legendre polynomials and then convert it to a corresponding system of
algebraic equations. In a similar manner, we transform the supplementary conditions to a algebraic system of
equations. Finally, by combining these two systems of algebraic equations, we obtain a system of linear
algebraic equations and solve it to obtain an approximate solution of the problem.

This paper is organized as follows. In Section 2, we describe properties of Legendre polynomials. In
section 3, we explain numerical solution 2DLVIDEs by Tau method. Numerical examples are given in
section 4 to evaluation of our method. Finally, conclusions are given in section 5.

2. Properties of Legendre polynomials
2.1. Definition the Legendre functions

The Legendre polynomials are defined as [7]:
L, (x) =1, L, (x) = X, x e[-1, 1],
L. (x) = (2—%)x L, (x) —(1—%) L, ,(x) 1=2,3,4,....

So the shifted Legendre polynomials are defined as:
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2x—1

LM=1  LM==—  xell]
fori>2 as
L0 = - DL -@-DLL (0
with the orthogonally condition as:
I .
[LOL®d=12i11" =

0, otherwise.
2D shifted Legendre functions are defined on Q ( (X,t) e Q=[0, I]x[0, T], I, T are finite constants)
as[8]:

v (X 1) = Lm(lzx—l) Ln(TEt—l), mn=0,123,.... )

here L,,, L, are the well-known Legendre functions respectively of order m and n.
2D shifted Legendre functions v, (X, t) are orthogonal with each other as:

IT . .
T ol y 1=m, =N,
[Ty (00 W (6 ) Okl = { Zm 1) 20 +0) ;
0, otherwise.
Suppose that X = L*(€Q), the inner product in this space is defined by
T pl
< f,g>= J; J'O f(x, 1) g(x, t)dxdt, )

and the norm is as follows:
1

| f],=<f,f>2.
Let
{0 (X 0,10 (X 0o (X 1), s w0 (X 1), (X D)} X
be the set of 2D shifted Legendre functions and
Xn = span{y oo (X, 1),y (X, 1), o, on (X 1), oo 0o (6 1),y (X, 1), s W (X, D)}
and T (X, t)be an arbitrary function in X. Since Xy is a finite dimensional vector space, f has a unique

best approximation fyy € Xy [9], such that
Vg e XNN'H f— fNNH2 S” f _9”2'
Moreover since fyy € Xy there exist unique coefficients fq, for,..., fyn such that

FX D= iy (00 = 3 Fy 1wy (08 = FT(x, 1) = 37 (6 OF,

i=0 j=0
where F and/ (X, t) are (N +1)x (N +1) vectors with the form
F=[fo - Tons Tigsoees Tins oo Trgs voes fNN]T,
W (X 1) = [Wo0 (% 1), oo W (X D30 (X, 1)y Wy (X, ), e 000 (X, B, Wy O, BT,
2D shifted Legendre function coefficients fyy are obtained by
f(xt X, t
= (DY (D) MDD [Ty ot dxat

|90 (%, O IT

Similarly, any function k (x, t, y, z) € L*(Qx ), can be expanded in terms of 2D shifted Legendre
functions as

mn

k(x.t.y, 2) =" (X, OKy(y, 2), ©)
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where
Kz[kijmn], i,j,mn=012 ..,N,
in which
_<<KX Y, 2), v (Y, 2) > w5 (1) >

N e A e

2.2. Operational matrices of integration

The integration of the vector y(X,t) is already defined above can be approximately obtained as [8]:

t X
[ v )Xt = Qu(x,1) = (P ® P,)p (x.b), (@)
Where x€[0,1],t [0, T] and Q, is the (N+1)(N +1)x (N +1)(N +1) operational matrix of

integration, such that P,, P, are the operational matrices of 1D shifted Legendre polynomials, respectively
defined on [0,1] and [0,T] as follows [10]:

1 10 - 0 0 0
3 3. . .
i=2lo 00 S i

IN-1 IN-1
0 00 0 -1 0
2N +1
T1 10« 0 0 01
3 3. . .
=210 00 1o, L
IN-1 IN-1
000 - 0 -1 0
IN +1

and ® denotes the kronecker product defined for two arbitrary matrices A and B as [11]:

A®B = (a,;B).
Analogously, we write
[ v nox =Q,u(xv) ©®)
[ v tydt = Qup(x. ) ©

where Q, and Q, are (N +1)(N +1)x (N +1) (N +1) matrices of the form as:
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I 10 - 0 0 0
_I_ 0 l . 0 0 0
33 .
_| : : :
Qz'z 000« —— o |
2N -1 2N -1
0 00 - 0 __I
I 2N +1 |
_Pz 0 0 - 0]
0 P O 0
Q=10 0 PR ,
10 0 0 - P

where | and 0 are the identity and zero matrix of order N+1, respectively.

3. Numerical solution
Consider a 2DNVIDE of the form:

Uy (X, B) + Uy, (X 1) + U, (X t) +u(x, t) (7
+J:IOX K(x,t,y, 2)F(y,z,u(y, z))dydz = R(x, t), (x,1) e,

with the supplementary conditions:

u(x,0) =a,, u©,t)=4,, (8)
u,(x, 0) = a, u,(0,t) =4,
where K(X,t,Y,2),R(x,t),a,,;, By, f,are known continuous functions and U is the unknown function to

be find and F is a nonlinear functionin U,

In this section, we introduce a numerical method for the solution of nonlinear 2D Volterra integro-
differential equations of the form (7). For this purpose, assume that F(X, t, u(x, t)) = o(x, t), so that Eq.(7)
convert to:

U, (X 8) + Uy, (X, 1) + U, (X B) +u (X, t) (9)

K&ty Doly. 9dydz =R, 1), (e,
Using the methods described in the previous section, we approximate the functions in Eq. (9) as:
U (6 D)=y’ (X, )A= ATy (x, 1),

u,(x, )=y’ (x,t)B=BTy(xt),

u,(x, t) =y’ (x,t)D =Dy (x,1),

u(x,t)=w' (x,t)C =CTy(x,1),

u(x,0) =y’ (x,t)E, = E] w(x,1), (10)

[[u(x 0)dt =y (x DE, = EJp(x,1),

u(0,t) =y’ (X, t)E; = EJw(x,1),
_[OXuX(O, t)dx =y (x, t)E, = Elw(x 1),

u (x,0) =y’ (x, t)E; = EJw(x,1),
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u (0, ) =y " (x, Eg = Eqw(x, 1),
v )=y (x,1)G =G w(xt).
We have:
t ot , et t , , t .
jo jou“(x, t')dt'dt’ = jo(ut (%, t') =, (x, 0))dt’ = u(x, t) —u (x, 0) — Iout(x, 0)dt,
on the other hand, using equation above, we derive:
Tt i I+ — Lt T i I~ TA2
_[O_Lu“(x, t')dt’dt’ = jojo DTy (x, t')dt’ = DTQ2y(x, t),
from Egs. (10-12), we have:
DTQ7 w(x, 1) =CTy(x, t) —E{ w(x, t) - E;w(x 1),
therefore
D'Q2=C" —E —E/.
Similary:
j: onuxx(x', t)dx'dx = jox(ux(x', t)—u, (0,1))dx = u(x,t)—u(0,t)- IOXuX(O, t)dx
by using Egs. (5) and (10), we obtain:
jo jouxx (X', t) dx'dx’ = jo jo ATy (X, t)dx’ = ATQ2 w(x, t),
hence from Egs. (10), (14) and (15), we have:
ATQ; w(x, 1) =Cly(x, t) = Egw(x ) —Ejp(x, 1),
thus:
ATQZ=C" —El —E].
We have
j;utt(x,t')dt‘ = U, (x, ) =, (x,0),
and from Egs. (10)
j;un(x,t')dt' - j; DTy (x,t)dt =D Qu(x 1),
using Egs. (10), (17) and (18), we get :
U (X, 1) = DTQp (X, 1) + U, (X, 0) = DTQu (x,) + E5 w(x.1).
Analogously:
joxuxt (X, t)dx’ = u, (x, t) —u, (0, 1),
and from Egs. (10)
J‘Oxuxt (x',t)dx' = '[OXBT://(X’, t)dx' = B'Q,w(x, 1),
from Egs. (10) and Egs. (19-21) we obtain:
BTQzl//(X’ t) = DTQ3‘//(X!t) + ESTV/(X’t) - EGTV/(Xit)v
therefore we get :
B'Q, =D'Q, +E,' —Es .
If we approximate the functions K(X, t, y, z), R(X, t) in the form:
R(x, t) = F Ty (x,t) =y’ (x,t)F,

K(X! t! y! Z) = 4 Z Zkijmn l//ij (X, t)‘//mn (yl Z)!

N N
i=0 j=0 m=0n=0
then, we obtain:

I;IOXK(x, t,y, 2)u(y, z2)dydz =y (x, )11, = 1] w(X,1),
where

105

(11)

(12)

(13)

(14)

(15)

(16)

(17

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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N N N N L
lezzzzkijmn I:>ijmn’

- |_=O j=0m=0n=0 _
;;;;g 017750 Boo
A ;;;;g pl N B
;;;;g p|773qh B
- 2r +1I)_|€2k +1) (J'O' L, (X) L, (X) L, (x) dX) (J'OTLn (2) L, (2) L, () dz),
5, = 2r +1|)_|§2k +1) (J: L, (x) L, (X) L, (x) dx) (,[OTLJ' (ML, )L, (t)dt),
and

n=aQ, Q=R &P,
such that P,, P, are the operational matrices of 1D shifted Legendre polynomials that introduce in
section (2.2).
Since from Eq. (10), we have

v(y, 2)= ZZ 9wy (Y, 2) = v' (y,2)G,
therefore: ]
[ [ 0 0w (v, DY oy (v 2)dydz = 373 Coyry (6 O] [ (v, 2w (v, 2)dy iz,

p=01=0 p=01=0
on the other, we have:

Vo DV (1) =3 (v, 2) = Ty (y, 2),

r=0k=0
where

a=[ag, Ay, aNN]T WY ) = Woor Worr s Wi I
Using Eq. (4) and equation above we obtain:

N N X N N N N N N
chpllr//ij (X’ t)J’;JAOl//mn (y1 Z)!//pl (y! Z)dy dZ = Zzzzzchl Mn IBrklr//rk (X’ t)
p=01=0 p=01=0s=0h=0r=0k=0
M N N N N 7
zzzchlﬂghﬂoo
p=01=0s=0h=0

N N N N
zzzchlﬂghﬁm

=W  Wor s Wy ]| P=01=05=0n=0

ZZZZ C pl ﬂsqhﬂNN

p=01=0s=0h=0
Substituting Eqgs.(10), (23) and (24) into Eq. (9), we derive:
ATy (X, 1) + BTy (X, t) + D (X, t) + CTw (X, t) + 1 w(X, t) = F (X, 1), (25)
therefore:
A" +B" +D" +C" +I1I] =F". (26)
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Using Egs. (13), (16) and (22), we have:
D' =(C" -E/ -E;)Q;,
A" =(C"-Ej -E))Q, (27)
B"=(D'Q; + EST - EBT)Q;l-
Substituting Egs. (27) in Eq. (26), we get:
(C"-E; ~E;)Q," +((C" -E/ ~E;)Qy" +E5 —E{)Q, +(CT —E[ —E;) Q" +C" +I1; =F".  (28)

which is a system of algebraic equations.
On the other, we have:

F(x,t,u(x,t)) =o(x,t) =G w(x,t) =y (x,t)G. (29)
We now Collocate Eq.(29) at (N +1)(N +1) points (X;, t;), (i, ] = 0,1, ..., N) and obtain
F(Xi'tj ’ U(Xi’tj)) = GTW(Xi:tj) =y’ (Xiltj)G’ (30)

2 2
where X;, t; are zeros of L, (Tx—l) and L, (?t —1) respectively. Egs. (28) and (30) form a system

of algebraic equations. By solving it, we obtain an approximate solution of the problem.

4. Numerical examples

In this section, some examples are presented to evaluation of the present method. Note that as
mentioned previously, in all case any non-polynomials term were replace by the Legendre polynomials of
degree N and all computations have been done by programming in Matlab 2012.

Examplel. Consider the nonlinear 2D Volterra integro-differential equation [6]:

u, (X, t) +u(x,t) —_f;jox(y+cosz)u2(y, z)dydz = f(x,1),

1 . 1 1 :
f(x,t) = =x*sin(t)cos(t) — = x*t — = x3sin3(t),
(x,1) 3 (t)cos(t) 3 9 (t)

x,t €[0, 1],

with supplementary conditions as:
u(x, 0) =0,
The exact solution is U (X, t) = xsin(t).
We substitute v (X, t) = uz(x, t) to get a linear equation and then apply the present method on it.

Table 1 shows the numerical results obtained here and the numerical results of [6] for this example.
Table 1: Numerical results for Example 1.

u,(x, 0) = x.

Example 2. In this example we consider the following linear two-dimensional integro— differential

equation:

(x,1) N=2 N=3 m=16[6]

(0.01,0.01) | 6.14x10° | 3.53x10” | 5.13x107

(0.02,0.02) | 1.06x10* | 6.23x10° | 1.30x10°°
(0.1,0.1) | 3.61x10° | 8.94x10° | 556x10°°
(020.2) | 521x10* | 5.86x10° | 5 97,107

u,, (x t)+u,(x, t)+J';IOXu (y, 2)dydz = g(x, 1),

g(x, t):%x3t2+2t, (x,t) €[0,1]x][0,1],

with supplementary conditions as:

u(x,0)=0, u,0,t)=0, u,(x,0)=x> u(0,t)=0.
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Here, the exact solution is u (x, t) = x°t . The numerical results with N =1are shown in Table 2 and
the exact solution of this equation is obtained with N=2.

Table 2: Numerical results for Example 2.
(x,t) = (2—' , 2-') Present method with
N=1

4.1x107?
52x107°
7.2x10°°
6.8x10°°
4.4x10°°
2.5x107°

Il
OO B W|N| -

Example3. For the end example, consider the following equation [6, 12]
Uy (X, 1) + Uy (X, 1) +I;IOXX2t u(y, z)dydz=g(x,t), xte[0,1],
where
1 1
X, t) = xe' == x*t + = x"te',
g(x 1) 5 5

with supplementary conditions as:
u(0,t)=0, u,(x,1)=e".

The exact solution of this problem is u (x ,t) =xe". The absolute values of the errors for this problem

are shown in Table 3 and the absolute values of the errors for this problem of [6,12] are shown in Table 4.
The absolute error function for N= 4, 5 is plotted in Figs. 1, 2.

Table 3: Numerical results for Example 3.
(x,t) N=4 N=5
(0.01,0.01) 637 x1077 | 2.37 x 107°
(0.02,0.02) 624 %1077 | 1.76 x 107°
(0.1,0.1) 210 x107% | 9.54 x 108
(0.2,0.2) 2.01 x107% | 7.67 x 107°

Table 4: Numerical results [6, 12] for Example 3.
(x,£) less (X D|[12] | [ege(x,D)[[12] | m=32[6] m = 64[6]
(0.01, 0.01) 1.66 x 1077 1.66 x 1077 223 x107® 212 x10°%
(0.02,0.02) 133 x10°% 133 x10°% 7.98 x 1078 7.74 x 1078

(0.1,0.1) 1.67 x10~# 1.66 x107% 6.80 x 107° 471 x107®
(0.2,0.2) 1.34 x 1073 1.33 x 1073 233 x107* 2.23 x107*
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5.
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Fig. 1: Plot of the function ey (X,t) with N = 4 for Example 3.

x 107

G By — e S S . .

.

M oo 80 60 40 20 0

Fig. 2: Plot of the function €y (X,t) with N =5 for Example 3.

Conclusion
We introduced a new method for solving two-dimensional nonlinear Volterra integro-differential

equations, based on expanding the solution in terms of two dimensional Legendre polynomials. As the
numerical results have shown, comparing the present method and other numerical methods, shows that the
present method is more accurate. Also, it will be possible to investigate the numerical solution of two
dimensional linear and nonlinear Fredholm integro- differential equations.
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