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Abstract. In this paper an iterative method based on shifted Legendre polynomials is presented to obtain 

the approximate solutions of optimal control problems subject to integral equations. The operational matrices 

of integration and product of shifted Legendre polynomials for solving integral equation is employed. The 

methodology is based on the parametrization of control and state functions. This converted the problem to 

nonlinear optimization problem in any iteration. In addition, some numerical examples are presented to 

illustrate the accuracy and efficiency of the proposed method. 
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1. Introduction  

The classical theory of optimal control was developed in the last years as a powerful tool to create 

optimal solutions for real processes in many aspects of science and technology. Complexity of applying 

analytical methods for obtaining fast and near optimal solutions is the reason for creating numerical 

approaches. The numerical methods for solving optimal control problems described by ODE or integral 

equations can be found in [1]. Some interesting iterative schemes with their convergence for optimal control 

of Volterra integral equations considering some conditions on the kernel of integral equation was introduced 

in [2-4]. The method of parametrization for solving some classes of optimal control problems were proposed 

[5-7]. Lee and Chang [8] appeared to be the first to study optimal control problem of nonlinear systems using 

general orthogonal polynomials. Chebyshev polynomials [9] were used for solving nonlinear optimal control 

problem. A Fourier based state parameterizations approach for solving linear quadratic optimal control 

problems proposed in [10]. The hybrid functions consisting of the combination of block-pulse functions with 

Chebyshev polynomials [11], Legendre polynomials [12] and Taylor series [13, 14] shown to be a 

mathematical power tool for discretization of selected problems. Also some methods based on approximating 

the Volterra integral equation can be seen in [15, 16]. In this paper, we considered the numerical solution of 

a class of optimal control problems subject to integral equations, which is described by the following 

minimizing problem: 

      
1

0

( , ) , , ,J x u f t x t u t dt                                                                    (1) 

subject to: 

         
1

1 1 2 2

0 0

x(t) ( ) , , , , , ,

t

y t K t s x s u s ds K t s u s x s ds                                (2) 

where 

  1 2, , 0,1f C       and   (.) 0,1y C  are given function.   (.), (.) 0,1x u C  

are the state and control functions, respectively, which to be determined and the given kernel functions, 

1( , , ( ), ( ))K t s x s u s is smooth in   0,1C     and 2( , , ( ))K t s u s  is smooth in 

     0,1 0,1 .C C    Here, we assume that the problem (1)- (2) has a unique solution. Due to the 

absence of an approximate numerical method for solving this kind of optimal control problems the main 

purpose of this article is to present a direct numerical method for obtaining approximate solutions of the Eqs. 
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(1) and (2) by using parametrization and shifted Legendre polynomials. The paper is organized as follows: in 

section 2, the shifted Legendre polynomials and their properties are presented. Section 3 is devoted to the 

solution method. In section 4, we reported our numerical findings and demonstrated the accuracy of the 

proposed method. 

2. Properties of shifted Legendre polynomials  

A set of shifted Legendre polynomials, denote by  ( )kL t  for 0,1,2,k   is orthogonal with respect 

to the weighting function ( ) 1,w t  over interval  0,1 ,  can be generated from the recurrence relation [17] 

1 1(k 1)L ( ) (2k 1)(2t 1)L ( ) ( ), 1,2,3,k k kt t kL t k                           (3) 

With 

0 1( ) 1, ( ) 2 1.L t L t t                                                                     (4) 

The orthogonality of these polynomials is expressed by the relation 

1

0

1
,

2 1t (

,

)

0

( )j kL L t
j

kdt
k

j k
















                                                           (5) 

 A function, ( )f t  square integrable in  0,1 , may be expressed in terms of shifted Legendre 

polynomials as 

0

( ) ( ) ( ), 0
m

m i i

i

f t P t c L t m


                                                        (6) 

Equation (6) can be written as 

( ) ( )T

mP t C L t                                                                           (7) 

where the shifted Legendre coefficient vector C and the shifted Legendre vector ( )L t  are given by 

 0 1 2, , , , ,
T

mC c c c c                                                                    (8) 

 0 1 2( ) ( ), ( ), ( ), , ( ) .mL t L t L t L t L t                                                     (9) 

 The use of an orthogonal basis on  0,1  allows us to directly obtain the least-squares coefficients of 

( )mP t  in that basis, and also ensure permanence of these coefficients with respect to the degree m the 

approximate, that is, all coefficients of 1( )mP t  agree with those of ( )mP t  , except for that of the newly 

introduced term. By using Eq. (5) the Legendre coefficients are given by 
1

0

(2 1) ( ) ( )dt, j 0,1,2, ,m.j jc j L t f t                                              (10) 

Also, the integration of the cross, product of two vector ( )L t  in Eq. (9) is 
1

0

1 1
( ) ( )dt 1, , , ,

3 2 1

TD L t L t diag
m

 
   

 
                                             (11) 

where, D  is the ( 1) ( 1)m m    diagonal matrix. 

The integrating of the vector ( )L t  defined in Eq. (9) is given by 
1

0

( )d ( ),L x x PL t                                                                     (12) 

where P  is the ( 1) ( 1)m m    operational matrix of integration of the shifted Legendre polynomials is 

given by [18], and it is a tridiagonal matrix. 
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1 1 0 0 0 0 0

1 1
0 0 0 0 0

3 3

1 1
0 0 0 0 0

1 5 5

2

1 1
0 0 0 0 0

2 1 2 1

1
0 0 0 0 0 0

2 1

P

m m

m

 
 
 
 
 

 
 
 
 
 
  
 
  

 

                                (13) 

The following property of the product of two Legendre function vectors is given by [12] 

( ) ( ) ( ),TL t L t C CL t                                                                  (14) 

where C  is defined as Eq. (8) and C  is a ( 1) ( 1)m m    product operational matrix. To illustrate the 

calculation, we choose 2m  , we have 

0 1 2

1 0 2 2

1 2 0 2

1 1 2 2
.

2 3 5 3

1 2 2

5 5 7

c c c

C c c c c

c c c c

 
 
 
  
 
 
 
 

                                                    (15) 

3. The iterative method and numerical solution of optimal control problem  

Let Q  be the subset of the product space      0,1 0,1C C   contains all pairs  (.), (.)m nx u , 

which satisfy the Eq. (2). Also, let ,m nQ  be the subset of Q  consisting of all pairs  (.), (.)m nx u , where 

(.)nu  and (.)mx  is a parameterized control and state functions as following polynomials: 

0

( ) ( ) ( ),
n

T

n i i

i

u t a L t A L t


                                                             (16) 

0

( ) ( ) ( ),
m

T

m j j

j

x t b L t B L t


                                                           (17) 

 where: 

 0 1 1, , , , 0, 1, 2, , ,T

n nA a a a if n m a i m n      

 0 1 1, , , , 0, 1, 2, , .T

m mB b b b if m n b i n m      

Suppose ( )y t  can be expressed as 

( ) ( ),Ty t Y L t                                                                         (18) 

the coefficients vector Y  is known and can be calculated from Eq. (10). Replacing Eqs. (16), (17) and (18), 

into Eq. (2) we have: 
1

1 1 2 2

0 0

( ) ( ) ( , , ( ), ( )) ( , , ( )) ( ) ,

t

T T T T T TB L t Y L t k t s B L s A L s ds k t s A L s B L s ds                 (19) 

Eq. (19) reducing to a set of algebraic equations, find vector B  corresponding vector A , where 

satisfying Eq. (17) therefore, we get: 

 0 1

0

( ) , , , ( ),
m

m j n j

j

x t b a a a L t


                                                  (20) 
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Suppose,  * *(.), (.)m mx u  be the solution minimizing J  on , , 1, 2, , 1, 2,m nQ m n   .Here, 

1: , 0,1, ,n

jb j m    are continuous functions. Substituting Eqs. (16) and (20) into Eq. (1), 

( , )m mJ x u  may be considered as a function  0 1, , , nJ a a a . The necessary conditions for the minimum 

are given by 

0, 0,1,2, , .
i

J
i n

a


 


                                                                 (21) 

Equation (21) corresponds to a set of 1n  algebraic equations with the unknown 0 1, , , na a a  

coefficients. Thus, the vector A  can be obtained by solving Eq. (21) and then the unknown vector B  will be 

obtained from Eq. (19). Also the optimal control and optimal state will be calculated from Eqs. (16) and (17), 

respectively. Finally, we can find cost function. 

An algorithm on the basis of the above discussions is proposed here: 

Algorithm 

Choose 1 20, 0     for accuracy of the solution. 

Step 1: Let 1 0 0 1 1 1 0 0 1 11, ( ) ( ) ( ), ( ) ( ) ( )m n k u t a L t a L t x t b L t b L t         

and 1 1 1( (.), (.))J x u  , where 0 0 0 1( , )b b a a   and 1 1 0 1( , )b b a a . 

Step 2: Let 1m m    and 1k k   and find 
,

( )inf
m n

k
Q

j 
  

Step 3: If 1 1k k      then go to step 4, otherwise go to step 2. 

Step 4: Let 1n n    and 1k k   and go to step 4 otherwise go to step 2. 

Step 5: If 1 2k k     then go to Step 4. 

4. Numerical examples 

 Example 1 For the first example consider the optimal control problem of minimizing: 

   
1

2 2

0

( , ) ( ) 1 ( ) 1 ,J x u x t t u t t dt                                                        (22) 

subject to following nonlinear Fredholm integral equation: 

 
1

0

1 7
( ) ( ) ( ) .

3 6
x t t st u s x s ds                                                             (23) 

The exact optimal solution of Eqs. (22) and (23) are: *( ) 1x t t   and 
*( ) 1u t t  , with optimal 

criteria  * *( ), ( ) 0.J x t u t   

Table 1: The estimated values of J in Example 2. 
 

Iteration n m J in  presented method J in  method  of [18] 

      1 1  1      0.00105437                 0.0444 

      2 1  2     1.17808 × 10−5
                                                    0.0107 

      3 1  3           2.15566 × 10−7
           1.5226 × 10−4

 

      4 2  2     1.16891 × 10−7
           7.8920 × 10−5

 

      5 2  3   1.3105 × 10−8
           2.5166 × 10−5

 

           6              2     4         1.3462 × 10−10                                     1.0922 × 10−7        
 

 

For this example we have 2 11, 0   ; Eq. (23) can be written as 

1 1

0 0

1 7
( ) ( ) ( ) ( ) ,

3 6
x t t sx s ds t u s x s ds

 
    

 
                                                   (24) 

substituting Eqs. (16), (17) and (18) into Eq. (24), we obtain 

1 ,T T T T T TB Y F DBF A DBE                                                             (25) 
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where 

 1 0,1, ,0 , ( ).T TE t F L t   

 

For 1m n  , by solving Eq. (25), we have 

   
1 1

0 1

0 1 0 1

10 7 10 77
, ,

3 8 11 11 11 8 11

a a
b b

a a a a

   
    

     
                                 (26) 

by replacing 0b  and 1b  into Eq. (17) we get 

   
1 1

1 0 1

0 1 0 1

10 7 10 77
( ) ( ) ( ),

3 8 11 11 11 8 11

a a
x t L t L t

a a a a

   
   

     
                          (27) 

now substituting Eqs. (16) and (27) into Eq. (22) to optimization J we get 

 

 

 

 

2

0 1 0 10 1
0 3 2

0 0 1 0 1

682 4 3 62 4 3( , )
3 2 0,

9 8 11 3 8 11

a a a aJ a a
a

a a a a a

   
     

      
                          (28) 

 

 

 

 

2

0 1 0 10 1 1

3 2

1 0 1 0 1

62 4 3 62 4 3( , ) 21
0,

3 3 9 8 11 9 8 11

a a a aJ a a a

a a a a a

   
     

      
                          (29) 

Solving Eqs. (28) and (29) we have 0 11.5, 0.5.a a   

Substituting the values a0 and a1 into Eq. (26), we obtain: 0 10.5, 0.5.b b   , by applying the 

method of section (3) on this example leads to exact solutions. Therefore 1 1( ) 1 , ( ) 1x t t u t t     and 

0.J   

 

Example 2 For the second example consider the following optimal control problem [18] 

 

   
1

2 2

0

( , ) ( ) 1 ( ) 1 ,J x u x t t u t t dt                                                       (30) 

subject to the following nonlinear Volterra integral equation: 

 2

0

( ) ( ) ( ) (s) ,

t

x t y t u s x ts ds                                                        (31) 

where 

   
5

2( ) 1 2 cos( ) 2 sin( ) ,
4

t
y t t t t t      

Table 2: The exact and approximate values of control function for Example 2. 
 

 
t 

Approximate 

with n = 1, m = 1 

Approximate 

with n = 1, m = 2 

Approximate 

with n = 1, m = 3 

Exact 

values    

0 −9.627183 × 10−4
 −9.27183 × 10−4

 1.20528 × 10−6
 0.0 

0.1 0.0987431 0.0995164 0.100018 0.1 
0.2 0.198456 0.19966 0.200024 0.2 

0.3 0.298169 0.299804 0.300029 0.3 

0.4 0.397882 0.39947 0.400035 0.4 

0.5 0.497595 0.500091 0.500041 0.5 

0.6 0.597308 0.600234 0.600047 0.6 

0.7 0.697021 0.700234 0.700053 0.7 

0.8 0.796734 0.800522 0.800058 0.8 

0.9 0.896446 0.900665 0.900064 0.9 

1 0.996159 1.00081 1.000070 1 

the exact optimal solution of Eqs. (30) and (31) are: *( ) cos( )x t t  and 
*( )u t t , with optimal criteria 

 * *, 0.J x u   
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Eq. (31) can be expressed approximately as: 

.T T T TB Y A ABP A AFPF                                                           (32) 

where A  calculated from Eq. (14). 

In Table 1, we list the approximate values of the cost function J in any iteration and comparison 

between proposed method and the method given in [18]. Tables 2 and 3 show the comparison between exact 

and approximate solutions in any iteration. 
 

Table 3: The exact and approximate values of state function for Example 2. 
 

 
t 

Approximate 

with n = 1, m = 1 

Approximate 

with n = 1, m = 2 

Approximate 

with n = 1, m = 3 

Exact 

values 

0 1.07296 0.995791 1.00057 1 

0.1 1.02715 0.991653 0.995155 0.995004 

0.2 0.981348 0.978099 0.979767 0.980067 

0.3 0.935544 0.955129 0.954748 0.955336 

0.4 0.889739 0.922741 0.920433 0.921061 

0.5 0.843935 0.880937 0.877194 0.877583 

0.6 0.798131 0.829715 0.825346 0.825336 

0.7 0.759326 0.769077 0.765242 0.764842 

0.8 0.706522 0.699023 0.697225 0.696707 

0.9 0.660717 0.619551 0.621636 0.62161 

1 0.614913 0.530663 0.538828 0.540302 

 

                                                                 Table 4: The estimated values of J for Example 3 
                                       Iteration     n     m     J                 CPU Time 

                                              1                   1     1      4.5574 × 10−10                 4.556 

   2                   1     2      2.666362 × 10−18             4.867         

 

Table 5: The absolute difference between exact and approximate solutions, for Example 3 with n=1, m=2. 
t   ( ) ( )Exact approximatex t x t   ( ) ( )Exact approximateu t u t  

0 4.30244 × 10−3 3.00704 × 10−12 

0.1 2.2157 × 10−3 4.23794 × 10−12 

0.2 5.55634 × 10−4 5.4689 × 10−12 

0.3 6.77745 × 10−4 6.69981 × 10−12 

0.4 1.48444 × 10−3 7.93074 × 10−12 

0.5 1.86446 × 10−3 9.16167 × 10−12 

0.6 1.81779 × 10−3 1.03926 × 10−11 

0.7 1.34444 × 10−3 1.6235 × 10−11 

0.8 4.4441 × 10−4 1.28544 × 10−11 

0.9 8.82303 × 10−4 1.40854 × 10−11 

1 2.6357 × 10−3 1.53163 × 10−11 

 

Example 3 Consider the optimal control problem of minimizing: 

   
1

2 2

0

( , ) ( ) ( ) ,J x u x t t u t t dt                                                       (33) 

subject to following nonlinear Volterra-Fredholm integral equation: 
15

0 0

3
( ) ( ) ( ) ( ) ( ) ,

4 4

t
t t

x t stu s x s ds stu s x s ds                                            (34) 

the exact optimal solutions of Eqs. (33) and (34) are
*( )x t t  and 

*( )u t t , with optimal criteria 

 * *, 0.J x u   

The approximate solutions is obtained by using the method in section (3). In Table 4 the approximate 

values of the cost function J in any iteration is listed. Table 5 shows the absolute difference between exact 

and approximate solutions, as we consider from Table 5, the maximum error of state function and control 
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function, for the presented method are 310  and 1110  respectively, with 1n   and 2m  . Figure 1, 

displays the comparison between exact and approximate solutions with 1n   and 2m  . 

 

Example 4 Consider the optimal control problem of minimizing: 
1

3 2

0

( , ) ( ) ( ) 2 ,J x u x t u t t t dt                                                      (35) 

subject to following nonlinear Fredholm integral equation: 
1

2 2

0

7 8
( ) (( 1) ( )) ( ) ,

4 15
x t t s t u s x s ds                                                (36) 

the exact optimal solutions of Eqs. (35) and (36) are
* 2( ) 1x t t   and 

* 3( ) 1u t t  , with optimal criteria 

 * *, 0.J x u   

By using the method in section 3, in Table 6 we listed the approximate values of the cost function J in 

any iteration. Figure 2, displays the maximum error ( )x t and ( )u t for example 4 with 3n   and 3m  . As 

you see from this figure, the maximum error of state function and control function, for the presented method 

are 1610 . 

 
Fig. 1: The exact and approximate state function (left) and 

 control function (right) for Example 3 with 1n  , 2m  . 

    

                                        Table 6: The estimated values of J for Example 4 
                                       Iteration     n     m     J                 CPU Time 

                                              1                   1     1      0.302025                             1.997 

                                              2                   1     2      1.28674 × 10−2                  2.02 

                                              3                   2     2      3.57143 × 10−4                  2.94 

   4                   3     3      6.93889 × 10−17                 3.59         

 

        
Fig. 2: The absolute difference between exact and approximate 

 solutions of ( )x t  (left) and ( )u t  (right) for Example 4. 
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Table 7: The estimated values of J in Example 5. 
 

Iteration n m J in  presented method J in  method  of [18] 

      1 1  1   2.34138 × 10−4            2.1070 × 10−4 
      2 1  2     1.6288 × 10−7

                                               2.385 × 10−7 

      3 1  3       3.2183 × 10−8
           1.9795 × 10−8

 

      4 2  2    5.96275 × 10−10
           1.4383 × 10−8

 

      5 2  3  3.4351 × 10−12
           4.2201 × 10−10

 

   
 

 
Fig. 3: The exact and approximate of ( )x t for Example 5  

with ( 1, 1)n m  , ( 2, 1)n m  , ( 2, 2)n m  , respectively. 

 
Fig. 4: The exact and approximate of ( )u t for Example 5 

 with ( 1, 1)n m  , ( 2, 1)n m  , ( 2, 2)n m  , respectively. 

Example 5 Consider the optimal control problem of minimizing [18] 

   
1

2 2

0

( , ) ( ) ( ) ,t tJ x u x t e u t e dt                                               (37) 

subject to following nonlinear Volterra integral equation: 

 
0

( ) ( ) ( ) ( ) ,

t

x t y t u s x s t ds                                                          (38) 

where
1 1

( ) (1 ) ,
2 2

t ty t e t e t     the exact optimal solution of Eqs. (37) and (38) are:
*( ) tx t e  and 

*( ) tu t e , with optimal criteria  * *, 0.J x u   

The approximate solutions is obtained by using the method in section 3, with 2n  and 2m  . Table 7 

shows the comparison between results for J the proposed method and the method given in [18]. Figures 3 

and 4 show the comparison between exact and approximate solutions in any iteration for this example. 

5. Conclusion 

In this article, we have proposed a numerical scheme for finding approximate solution of optimal 

control problems. The method is based upon reducing the solution of integral equation into a set of algebraic 

equations by expanding shifted Legendre polynomials with unknown coefficients in any iteration. Then by 

using the parametrization the coefficients of state function was obtained to correspond with coefficients of 

control function. Comparing with expanding Taylor, the results of numerical examples demonstrated that this 

method by using shifted Legendre polynomials is more accurate than Taylor polynomials. Also we suggested 



A. Ordookhani et al.: The Iterative Method for Optimal Control Problems by the Shifted Legendre Polynomials  

 

 

JIC email for contribution: editor@jic.org.uk 

128 

the procedure which is simple and effective and some numerical results showed that the given scheme can 

produce the approximate solutions with high precision able to compare the results with their exact solutions. 
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