

Published by World Academic Press, World Academic Union

ISSN 1746-7659, England, UK

Journal of Information and Computing Science

Vol. 11, No. 2, 2016, pp. 129-135

General Regression Neural Network Optimization for

Handwritten Persian Digits recognition Using Particle Swarm

Optimization

Mohammad Masoud Javidi 1, Rahim Gholami Shooli 2

1 Department of Computer, Shahid Bahonar University,Kerman, Iran, E-mail:javidi@uk.ac.ir, Tel.: +98-913-140 6784.
2 Department of Computer, Shahid Bahonar University,Kerman, Iran, E-mail:gholami.r@math.uk.ac.ir

 (Received October 28, 2015, accepted February 27, 2016)

Abstract. In this paper an optimization algorithm based on Particle Swarm Optimization algorithm is used

for handwritten Persian digits recognition with General Regression Neural Network .The system uses image

zoning for the digit recognition. General Regression Neural Network accuracy depends on the centers and

widths of the hidden layer neuron basis functions (neuron spread). In this paper we use Particle Swarm

Optimization algorithm to determine General Regression Neural Network hidden layer spread. Results show

that the optimized General Regression Neural Network provides higher recognition ability compared with

that of unoptimized General Regression Neural Network.

Keywords: Particle Swarm Optimization, General regression neural networks, Pattern recognition, Farsi

digits.

1. Introduction

Particle swarm optimizers (PSO) are optimization algorithms, modeled after the social behavior of

flocks of birds [1]. PSO is a population based search process where individuals, referred to as particles, are

grouped into a swarm. Each particle in the swarm represents a candidate solution to the optimization problem.

The General Regression Neural Network (GRNN) which is a kind of radial basis function (RBF)

networks was developed by Specht (1991) [2] and is a powerful regression tool with a dynamic network

structure. The GRNN was applied to solve a variety of problems like prediction, image processing, control,

plant process modelling or general mapping problems. Recently, general regression neural network (GRNN)

is successfully used in pattern recognition and image processing due to the advantages on fast learning and

convergence to the optimal regression surface as the number of samples becomes very large [9].In Chen,

Leung (2004) [12], GRNN is used to error correction in foreign exchange forecasting. In Kim et al. (2010),

genetic algorithm is used to optimize GRNN to design optical lens controller. In Polat and Yildirim (2007)

[9], genetic algorithm used to optimize GRNN to pattern recognition.

In this study we want to optimize GRNN using Particle swarm optimization (PSO) for Persian digit

recognition. Here, Particle swarm optimizer is used to determine the spread value in neural network. Next

Section 2 gives an overview of GRNN structure. In Section 3, a brief summary of Particle swarm

optimization (PSO) is presented. In Section 4, simulation about how spread is selected is mentioned. And in

section 5, results are given.

2. General Regression Neural Network (GRNN)

General Regression Neural Network (GRNN) was developed by Specht (1991) [2] does not require an

iterative training procedure as in back propagation method. It approximates any arbitrary function between

input and output vectors, drawing the function estimate directly from the training data. The GRNN is used

for estimation of continuous variables, as in standard regression techniques. By definition, the regression of a

dependent variable y on an independent x estimates the most probable value for y, given x and a training set.

The regression method will produce the estimated value of y which minimizes the mean-squared error.

Mohammad Masoud Javidi et al. : General Regression Neural Network

 Optimization for Handwritten Persian Digits recognition Using Particle Swarm Optimization

JIC email for contribution: editor@jic.org.uk

130

Fig. 1 The GRNN architecture

The GRNN topology consists of four layers: the input layer, the pattern layer, the summation layer, and

the outputs (Fig. 1). The input layer contains a number of nodes equal to the number of input variables in the

model. Each node in the input layer is fully interconnected to each node in the pattern layer. The number of

pattern layer Nodes is always equal to the number of cases in the training dataset. Each node in the pattern

layer is assigned a unique training vector corresponding to one of the randomly selected training set cases.

The distance is calculated between each pattern layer node vector and the input layer vector, the exponent

then being taken of that distance. All pattern layer nodes fully connect to the summation layer nodes. The

summation layer nodes sum the values of all pattern layer nodes. There are two types of summation layer

nodes: a numerator node and a denominator node. For those connections to the numerator node, the value of

each pattern layer node is multiplied by the actual output value of that training case prior to summation. The

predicted value is finally calculated in the output layer node by dividing the numerator node value by the

denominator node value. After determining the error between actual and predicted y values and depending on

the optimization technique used to minimize the error between those values, the above calculation may be

run numerous Times with a different smoothing factor each time. Training stops once a threshold minimum

error value is reached, or when the test set square error begins to rise. Equation (1) expresses how each

predicted output is a function of the corresponding output components y associated with each stored pattern

xi:

 = (1)

Where is the predicted output, yi is the ith case actual output variable, D(X,Xi) is calculated from (2),

and n is the total number of cases in the training data set.

D(X,) = (2)

Where D(X, Xi) is the distance between the input vector x and the ith case vector xi and xj is the jth data

value in the input vector, xij is the jth data value in the ith case vector, and σj is the smoothing factor (GRNN

spread) for the jth.

Journal of Information and Computing Science, Vol. 11(2016) No. 2, pp 129-135

JIC email for subscription: publishing@WAU.org.uk

131

Specht suggests in [2] the use of the holdout method to select a good value of σ. In the holdout method,

one sample of the entire set is removed and for a fixed σ, GRNN is used again to predict this sample with the

reduced set of training samples. The squared difference between the predicted value of the removed training

sample and the training sample itself is then calculated and stored. The removing of samples and prediction

of them again for this chosen σ is repeated for each sample-vector. After finishing this process the mean of

the squared differences is calculated for each run. Then the process of reducing the set of training samples

and predicting the value for these samples is repeated for many different values of σ. The σ for which the

sum of the mean squared difference is the minimum of all the mean squared differences is the σ that should

be used for the predictions using this set of training samples. According to Specht there are no restrictions to

this process, but unfortunately it turned out that for certain conditions this process does not show the desired

results.

3. Particle Swarm Optimization (PSO)

Particle swarm optimizers (PSO) are optimization algorithms, modeled after the social behavior of

flocks of birds [1]. PSO is a population based search process where individuals, referred to as particles, are

grouped into a swarm.

Each particle in the swarm represents a candidate solution to the optimization problem. In a PSO system,

each particle is “flown” through the multidimensional search space, adjusting its position in search space

according to own experience and that of neighbouring particles. A particle therefore makes use of the best

position encountered by itself and that of its neighbours to position itself toward an optimal solution. The

effect is that particles “fly” towards a minimum, while still searching a wide area around the best solution.

The performance of each particle (i.e. the “closeness” of a particle to the global optimum) is measured using

a predefined fitness function which encapsulates the characteristics of the optimization problem. Each

particle i maintains the following information: xi , the current position of the particle; vi, the current velocity

of the particle; and yi, the personal best position of the particle. The personal best position associated with a

particle i is the best position that the particle has visited so far, i.e. a position that yielded the highest fitness

value for that particle. If f denotes the objective function, then the personal best of a particle at a time step t is

updated as:

 (3)

Two main approaches to PSO exist, namely lbest and gbest, where the difference is in the

neighbourhood topology used to exchange experience among particles. For the gbest model, the best particle

is determined from the entire swarm. If the position of the best particle is denoted by the vector , then:

 (4)

Where s is the total number of particles in the swarm. For the lbest model, a swarm is divided into

overlapping neighbourhoods of particles. For each neighbourhood Nj , a best particle is determined with

position . This best particle is referred to as the neighborhood best particle, defined as:

{ (5)

,…, }

 | f()}  yi Nj

Neighbourhoods are usually determined using particles indices [7], although topological

neighbourhoods have been used also [3]. The gbest PSO is simply a special case of lbest with l=s ; that is, the

neighbourhood is the entire swarm.

For each iteration of a gbest PSO algorithm, vi and xi are updated as follows:

Vi(t+1)=wvi(t)+c1r1(t)(yi(t)-xi(t))+ c2r2(t)(-xi(t)) (6)

Xi(t+1) = xi(t) + vi(t+1)

Here w is the inertia weight, c1 and c2 are the acceleration constants and r1(t),r2(t)~u(0,1) .Fig.2

illustrates how each of the influence components combine to result in an iterated particle velocity and

subsequently position. The reader is referred to [4] for a study of the relationship between the inertia weight

and the acceleration constants in order to select values which will ensure convergent behaviour. Velocity

updates are also clamped to prevent them from exploding, thereby causing premature convergence. The PSO

algorithm performs repeated applications of the update equations above until a specified number of iterations

have been exceeded, or until velocity updates are close to zero. The quality of particles is measured using a

fitness function which reflects the optimality of the corresponding solution.Fig.3 shows PSO flow diagram.

Mohammad Masoud Javidi et al. : General Regression Neural Network

 Optimization for Handwritten Persian Digits recognition Using Particle Swarm Optimization

JIC email for contribution: editor@jic.org.uk

132

Fig. 2 Influences on particle swarm velocity iteration

Fig. 3 Flow diagram illustrating the particle swarm optimization algorithm

4. GRNN optimization using PSO for Persian digits recognition

Digit recognition is used to verify the amount of Czech read phone numbers and postal code and etc. In

this study PSO is used to optimize GRNN to recognize Persian digits. The GRNN spread value is determined

by Particle Swarm Optimization.

We use images of the HODA digits dataset for the experiments. HODA digits dataset is a dataset of

handwritten Farsi digits that presented with Hossein Khosravi and Ehsanollah Kabir in [13]. There are

Journal of Information and Computing Science, Vol. 11(2016) No. 2, pp 129-135

JIC email for subscription: publishing@WAU.org.uk

133

102,352 digits in this dataset were extracted from about 12,000 registration forms of two types, filled by

B.Sc. and senior high school students. The dataset presenters selected 60,000 samples for training set and

20,000 for test. The remaining samples are also available in another subset.

We also used 60000 samples for training set and 20000 for test. Optimization variable is spread value.

First we scaled training and test samples to same size. Then scaled images were divided into a number of

zones. Since present digits are white and their backgrounds are black, we can consider amount of white

pixels in each zone as that zone feature. Because digits are handwritten, we choose a number between 0 and

255 as threshold, then consider pixels with intensity greater than that as part of digit, and consider pixels

with intensity smaller than that as background pixels. Thus for each image, some features are achieved. Now

we use these features as GRNN inputs.

Then we use Particle Swarm Optimization for determine best spread (σ) value for GRNN. Here the cost

function is number of patterns from test set that network recognize incorrectly, and we use this cost function

for determine each particle cost in PSO.

When PSO stop condition satisfied, algorithm stops. Last gbest value stores best GRNN spread that

network that simulates with it, recognizes most Persian digits correctly.

5. Simulation AND Results

Thus above mentioned, we use images of the HODA digits dataset for the experiments. In this database,

there are 102,352 images include 10 digits. These images resolution are 200 dpi and each image contains a

white digit in black background.

Images in HODA have different sizes; therefore first we resize all images to 40*30 pixels and then

divide each image to 5*5 zones. After that we count number of pixels that their intensity greater than a

threshold (for our experiment, we consider threshold as 50).Thus for each image, 25 features are achieved

and we use them as GRNN inputs.

Fig. 4 accuracy of GRNN without any optimization

Then we consider 60000 training images as GRNN centers and determine a code for each digit as target

value of the network .Now to determine the digit of each test image, compare that image features with

centers images features via GRNN.

For GRNN simulation, we should determine its spread. For a bigger spread, the possible representation

of the point of evaluation by the training sample is possible for a wider range of images. For a small value of

the spread the representation is limited to a narrow range of images, respectively.

We first simulate GRNN without any optimization and determine its spread randomly.Fig.4 shows test

image recognition accuracy versus spread in GRNN without any optimization.

Then we use PSO for GRNN optimization. The PSO cost function is number of images from test set

that network recognize correctly; here our problem is maximization. Because of too much test data, PSO cost

calculation takes long times; since we choose 1000 data from test data randomly and calculate PSO cost for

them. Fig.5 shows PSO cost versus iteration in one algorithm running and Fig.6 shows PSO cost versus

spread in same algorithm running. Finally used last gbest to GRNN spread and simulate network with this

spread.Fig.7 shows test image recognition accuracy versus spread in GRNN that optimized with PSO.

Mohammad Masoud Javidi et al. : General Regression Neural Network

 Optimization for Handwritten Persian Digits recognition Using Particle Swarm Optimization

JIC email for contribution: editor@jic.org.uk

134

Fig. 5 gbestcost of PSO versus iteration for 1000 random test data

Fig. 6 gbestcost of PSO versus spread for 1000 random test data

In our proposed algorithm for test samples, 96.29% of instances were classified correctly in their classes.

Table 1 shows our algorithm results and compares with GRNN without optimization results.

TABLE 1 Results of algorithm running

Run GRNN without optimization GRNN optimized with PSO

 best spread test samples accuracy best spread test samples

accuracy

run 1 32.7742 57.18 7.9737 96.29

run 2 36.3259 43.585 6.0000 96.235

run 3 16.9525 92.54 7.0369 96.285

run 4 36.6217 42.585 6.0000 96.235

run 5 25.662 78.375 9.9648 95.965

6. Conclusion

This paper investigates the performance of GRNN optimized by Particle Swarm optimization for

Persian digit recognition. We use HODA dataset for our Persian digit database. Here we used 60000 images

from HODA dataset for network training and used 20000 instances for network test. Results show that the

achieve network can recognize Persian digits with high accuracy.

7. References

Journal of Information and Computing Science, Vol. 11(2016) No. 2, pp 129-135

JIC email for subscription: publishing@WAU.org.uk

135

[1] J Kennedy, RC Eberhart, Particle Swarm Optimization, Proceedings of the IEEE International conference on

Neural Networks, Vol 4, Perth, Australia, pp 1942-1948, 1995.

[2] Specht, D. F., A general regression neural network. IEEE Transactions on Neural Networks,(1991), 568–576.

[3] PN Suganthan, Particle Swarm Optimizer with Neighborhood Optimizer, Proceedings of the Congress on

Evolutionary Computation, pp 1958-1962, 1999.

[4] F van den Bergh, An Analysis of Particle Swarm Optimizers, PhD Thesis, University of Pretoria, South Africa,

2002.

[5] J Kennedy, RC Eberhart, Particle Swarm Optimization, Proceedings of the IEEE International Conference on

Neural Networks, Vol 4, Perth, Australia, pp 1942-1948, 1995.

[6] J Kennedy, RC Eberhart, Swarm Intelligence,Morgan Kaufmann,2001.

[7] Y Shi, RC Eberhart, Parameter Selection in Particle Swarm Optimization, Evolutionary Programming, Vol VII,

Proceedings of Evolutionary Programming, pp 591-600, 1998.

[8] M Omran, A Salman, AP Engelbrecht, Image classification using Particle Swarm Optimization, Proceedings of

the 4th Asia-Pacific Conference on Simulated Evolution and Learning,2002

[9] Polat, O. Yildirim, T. (2007). Genetic optimization of GRNN for pattern recognition without feature extraction,

Elsevier, Expert Systems with Applications 34 (2008) 2444–2448.

[10] Polat, O. Yildirim, T.(2006).Hand geometry identification without feature extraction by general regression neural

network, Elsevier Expert Systems with Applications 34 (2008) 845–849.

[11] Currit, N.(2002).Inductive regression: overcoming OLS limitations with the general regression neural network,

Elsevier Computers, Environment and Urban Systems, 26 (2002) 335–353.

[12] Chen, A. Leung, M.(2004). Regression neural network for error correction in foreign exchange forecasting and

trading, Elsevier Computers & Operations Research 31 (2004) 1049–1068.

[13] Hossein Khosravi, Ehsanollah Kabir. Introducing a very large dataset of handwritten Farsi digits and a study on

their varieties, Pattern Recognition Letters 28 (2007) 1133–1141.

