
 

Published by World Academic Press, World Academic Union 

ISSN 1746-7659, England, UK 

Journal of Information and Computing Science 

Vol. 11, No. 2, 2016, pp. 129-135 

 

 
 

 

 

General Regression Neural Network Optimization for 

Handwritten Persian Digits recognition Using Particle Swarm 

Optimization 

Mohammad Masoud Javidi 1,  Rahim Gholami Shooli 2 

1 Department of Computer, Shahid Bahonar University,Kerman, Iran, E-mail:javidi@uk.ac.ir, Tel.: +98-913-140 6784. 
2 Department of Computer, Shahid Bahonar University,Kerman, Iran, E-mail:gholami.r@math.uk.ac.ir 

 (Received October 28, 2015, accepted February 27, 2016) 

Abstract. In this paper an optimization algorithm based on Particle Swarm Optimization algorithm is used 

for handwritten Persian digits recognition with General Regression Neural Network .The system uses image 

zoning for the digit recognition. General Regression Neural Network accuracy depends on the centers and 

widths of the hidden layer neuron basis functions (neuron spread). In this paper we use Particle Swarm 

Optimization algorithm to determine General Regression Neural Network hidden layer spread. Results show 

that the optimized General Regression Neural Network provides higher recognition ability compared with 

that of unoptimized General Regression Neural Network. 

 

Keywords: Particle Swarm Optimization, General regression neural networks, Pattern recognition, Farsi 
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1. Introduction  

Particle swarm optimizers (PSO) are optimization algorithms, modeled after the social behavior of 

flocks of birds [1]. PSO is a population based search process where individuals, referred to as particles, are 

grouped into a swarm. Each particle in the swarm represents a candidate solution to the optimization problem.  

The General Regression Neural Network (GRNN) which is a kind of radial basis function (RBF) 

networks was developed by Specht (1991) [2] and is a powerful regression tool with a dynamic network 

structure. The GRNN was applied to solve a variety of problems like prediction, image processing, control, 

plant process modelling or general mapping problems. Recently, general regression neural network (GRNN) 

is successfully used in pattern recognition and image processing due to the advantages on fast learning and 

convergence to the optimal regression surface as the number of samples becomes very large [9].In  Chen, 

Leung (2004) [12], GRNN is used to error correction in foreign exchange forecasting. In Kim et al. (2010), 

genetic algorithm is used to optimize GRNN to design optical lens controller. In Polat and Yildirim (2007) 

[9], genetic algorithm used to optimize GRNN to pattern recognition. 

In this study we want to optimize GRNN using Particle swarm optimization (PSO) for Persian digit 

recognition. Here, Particle swarm optimizer is used to determine the spread value in neural network. Next 

Section 2 gives an overview of GRNN structure. In Section 3, a brief summary of Particle swarm 

optimization (PSO) is presented. In Section 4, simulation about how spread is selected is mentioned. And in 

section 5, results are given. 

2. General Regression Neural Network (GRNN) 

General Regression Neural Network (GRNN) was developed by Specht (1991) [2] does not require an 

iterative training procedure as in back propagation method. It approximates any arbitrary function between 

input and output vectors, drawing the function estimate directly from the training data. The GRNN is used 

for estimation of continuous variables, as in standard regression techniques. By definition, the regression of a 

dependent variable y on an independent x estimates the most probable value for y, given x and a training set. 

The regression method will produce the estimated value of y which minimizes the mean-squared error. 
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Fig. 1 The GRNN architecture 

The GRNN topology consists of four layers: the input layer, the pattern layer, the summation layer, and 

the outputs (Fig. 1). The input layer contains a number of nodes equal to the number of input variables in the 

model. Each node in the input layer is fully interconnected to each node in the pattern layer. The number of 

pattern layer Nodes is always equal to the number of cases in the training dataset. Each node in the pattern 

layer is assigned a unique training vector corresponding to one of the randomly selected training set cases. 

The distance is calculated between each pattern layer node vector and the input layer vector, the exponent 

then being taken of that distance. All pattern layer nodes fully connect to the summation layer nodes. The 

summation layer nodes sum the values of all pattern layer nodes. There are two types of summation layer 

nodes: a numerator node and a denominator node. For those connections to the numerator node, the value of 

each pattern layer node is multiplied by the actual output value of that training case prior to summation. The 

predicted value is finally calculated in the output layer node by dividing the numerator node value by the 

denominator node value. After determining the error between actual and predicted y values and depending on 

the optimization technique used to minimize the error between those values, the above calculation may be 

run numerous Times with a different smoothing factor each time. Training stops once a threshold minimum 

error value is reached, or when the test set square error begins to rise. Equation (1) expresses how each 

predicted output  is a function of the corresponding output components y associated with each stored pattern 

xi: 

 =                                                                     (1) 

Where  is the predicted output, yi is the ith case actual output variable, D(X,Xi) is calculated from (2), 

and n is the total number of cases in the training data set. 

D(X, ) =                                                                  (2) 

Where D(X, Xi) is the distance between the input vector x and the ith case vector xi and xj is the jth data 

value in the input vector, xij is the jth data value in the ith case vector, and σj is the smoothing factor (GRNN 

spread) for the jth. 
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Specht suggests in [2] the use of the holdout method to select a good value of σ. In the holdout method, 

one sample of the entire set is removed and for a fixed σ, GRNN is used again to predict this sample with the 

reduced set of training samples. The squared difference between the predicted value of the removed training 

sample and the training sample itself is then calculated and stored. The removing of samples and prediction 

of them again for this chosen σ is repeated for each sample-vector. After finishing this process the mean of 

the squared differences is calculated for each run. Then the process of reducing the set of training samples 

and predicting the value for these samples is repeated for many different values of σ. The σ for which the 

sum of the mean squared difference is the minimum of all the mean squared differences is the σ that should 

be used for the predictions using this set of training samples. According to Specht there are no restrictions to 

this process, but unfortunately it turned out that for certain conditions this process does not show the desired 

results. 

3. Particle Swarm Optimization (PSO) 

Particle swarm optimizers (PSO) are optimization algorithms, modeled after the social behavior of 

flocks of birds [1]. PSO is a population based search process where individuals, referred to as particles, are 

grouped into a swarm. 

Each particle in the swarm represents a candidate solution to the optimization problem. In a PSO system, 

each particle is “flown” through the multidimensional search space, adjusting its position in search space 

according to own experience and that of neighbouring particles. A particle therefore makes use of the best 

position encountered by itself and that of its neighbours to position itself toward an optimal solution. The 

effect is that particles “fly” towards a minimum, while still searching a wide area around the best solution. 

The performance of each particle (i.e. the “closeness” of a particle to the global optimum) is measured using 

a predefined fitness function which encapsulates the characteristics of the optimization problem. Each 

particle i maintains the following information: xi , the current position of the particle; vi, the current velocity 

of the particle; and yi, the personal best position of the particle. The personal best position associated with a 

particle i is the best position that the particle has visited so far, i.e. a position that yielded the highest fitness 

value for that particle. If f denotes the objective function, then the personal best of a particle at a time step t is 

updated as: 

                                           (3) 

Two main approaches to PSO exist, namely lbest and gbest, where the difference is in the 

neighbourhood topology used to exchange experience among particles. For the gbest model, the best particle 

is determined from the entire swarm. If the position of the best particle is denoted by the vector , then: 

                                                   (4) 

Where s is the total number of particles in the swarm. For the lbest model, a swarm is divided into 

overlapping neighbourhoods of particles. For each neighbourhood Nj , a best particle is determined with 

position . This best particle is referred to as the neighborhood best particle, defined as: 

{                                                       (5) 

,…,  } 

  | f( )}  yi  Nj 

Neighbourhoods are usually determined using particles indices [7], although topological 

neighbourhoods have been used also [3]. The gbest PSO is simply a special case of lbest with l=s ; that is, the 

neighbourhood is the entire swarm. 

For each iteration of a gbest PSO algorithm, vi and  xi are updated as follows: 

Vi(t+1)=wvi(t)+c1r1(t)(yi(t)-xi(t))+ c2r2(t)( -xi(t))                                     (6) 

Xi(t+1) = xi(t) + vi(t+1) 

Here w is the inertia weight, c1 and c2 are the acceleration constants and r1(t),r2(t)~u(0,1) .Fig.2  

illustrates how each of the influence components combine to result in an iterated particle velocity and 

subsequently position. The reader is referred to [4] for a study of the relationship between the inertia weight 

and the acceleration constants in order to select values which will ensure convergent behaviour. Velocity 

updates are also clamped to prevent them from exploding, thereby causing premature convergence. The PSO 

algorithm performs repeated applications of the update equations above until a specified number of iterations 

have been exceeded, or until velocity updates are close to zero. The quality of particles is measured using a 

fitness function which reflects the optimality of the corresponding solution.Fig.3 shows PSO flow diagram. 
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Fig. 2 Influences on particle swarm velocity iteration 

 
Fig. 3 Flow diagram illustrating the particle swarm optimization algorithm 

4. GRNN optimization using PSO for Persian digits recognition 

Digit recognition is used to verify the amount of Czech read phone numbers and postal code and etc. In 

this study PSO is used to optimize GRNN to recognize Persian digits. The GRNN spread value is determined 

by Particle Swarm Optimization. 

We use images of the HODA digits dataset for the experiments. HODA digits dataset is a dataset of 

handwritten Farsi digits that presented with Hossein Khosravi and Ehsanollah Kabir in [13]. There are 
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102,352 digits in this dataset were extracted from about 12,000 registration forms of two types, filled by 

B.Sc. and senior high school students. The dataset presenters selected 60,000 samples for training set and 

20,000 for test. The remaining samples are also available in another subset. 

We also used 60000 samples for training set and 20000 for test. Optimization variable is spread value. 

First we scaled training and test samples to same size. Then scaled images were divided into a number of 

zones. Since present digits are white and their backgrounds are black, we can consider amount of white 

pixels in each zone as that zone feature. Because digits are handwritten, we choose a number between 0 and 

255 as threshold, then consider pixels with intensity greater than that as part of digit, and consider pixels 

with intensity smaller than that as background pixels. Thus for each image, some features are achieved. Now 

we use these features as GRNN inputs. 

Then we use Particle Swarm Optimization for determine best spread (σ) value for GRNN. Here the cost 

function is number of patterns from test set that network recognize incorrectly, and we use this cost function 

for determine each particle cost in PSO. 

When PSO stop condition satisfied, algorithm stops. Last gbest value stores best GRNN spread that 

network that simulates with it, recognizes most Persian digits correctly. 

5. Simulation AND Results 

Thus above mentioned, we use images of the HODA digits dataset for the experiments. In this database, 

there are 102,352 images include 10 digits. These images resolution are 200 dpi and each image contains a 

white digit in black background. 

Images in HODA have different sizes; therefore first we resize all images to 40*30 pixels and then 

divide each image to 5*5 zones. After that we count number of pixels that their intensity greater than a 

threshold (for our experiment, we consider threshold as 50).Thus for each image, 25 features are achieved 

and we use them as GRNN inputs. 

 
Fig. 4 accuracy of GRNN without any optimization 

Then we consider 60000 training images as GRNN centers and determine a code for each digit as target 

value of the network .Now to determine the digit of each test image, compare that image features with 

centers images features via GRNN. 

For GRNN simulation, we should determine its spread. For a bigger spread, the possible representation 

of the point of evaluation by the training sample is possible for a wider range of images. For a small value of 

the spread the representation is limited to a narrow range of images, respectively. 

We first simulate GRNN without any optimization and determine its spread randomly.Fig.4 shows test 

image recognition accuracy versus spread in GRNN without any optimization. 

Then we use PSO for GRNN optimization. The PSO cost function is number of images from test set 

that network recognize correctly; here our problem is maximization. Because of too much test data, PSO cost 

calculation takes long times; since we choose 1000 data from test data randomly and calculate PSO cost for 

them.  Fig.5 shows PSO cost versus iteration in one algorithm running and Fig.6 shows PSO cost versus 

spread in same algorithm running. Finally used last gbest to GRNN spread and simulate network with this 

spread.Fig.7 shows test image recognition accuracy versus spread in GRNN that optimized with PSO. 
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Fig. 5 gbestcost of PSO versus iteration for 1000 random test data 

 

 
Fig. 6 gbestcost of PSO versus spread for 1000 random test data 

In our proposed algorithm for test samples, 96.29% of instances were classified correctly in their classes. 

Table 1 shows our algorithm results and compares with GRNN without optimization results. 

TABLE  1 Results of algorithm running 

Run GRNN without optimization GRNN optimized with PSO 

 best spread test samples accuracy best spread test samples 

accuracy 

run 1 32.7742 57.18 7.9737 96.29 

run 2 36.3259 43.585 6.0000 96.235 

run 3 16.9525 92.54 7.0369 96.285 

run 4 36.6217 42.585 6.0000 96.235 

run 5 25.662 78.375 9.9648 95.965 

6. Conclusion 

This paper investigates the performance of GRNN optimized by Particle Swarm optimization for 

Persian digit recognition. We use HODA dataset for our Persian digit database. Here we used 60000 images 

from HODA dataset for network training and used 20000 instances for network test. Results show that the 

achieve network can recognize Persian digits with high accuracy.  
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