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Abstract. In this paper, we proposed an efficient numerical method based on uniform Haar wavelet for the 

numerical solutions oflinear and nonlinear Benjamin–Bona–Mahony (BBM) Equations. Such types of 

problems arise in various fields of science and engineering. In present study more accurate solutions have 

been obtained by Haar wavelet decomposition with multiresolution analysis. Three test problems are 

considered to check theefficiency and accuracy of the proposed method.An extensiveamount of error analysis 

has been carried out to obtain the convergence of the method.The numerical results are found in good 

agreement with exact and finite difference method (FDM), which shows that the solution using Haar wavelet 

method (HWM) is more effective and accurate and manageable for these equations. 

Keywords: Haar wavelet method;Benjamin–Bona–MahonyEquation;Finitedifference method;Numerical 

simulation; Error analysis. 

1. Introduction  

Most scientific problems arise in real-world physical problems such as plasma physics, fluid mechanics, 

solid state physics and in many branches of chemistry [1]. We know that except a limited number of these 

problems, most of them do not have analytical solutions. The importance of obtaining the approximate 

solutions of nonlinear partial differential equations in physics and mathematics is still a significant problem 

that needs new methods to discover approximate solutions. Therefore, these nonlinear equations should be 

solved using numerical methods i.e. variational iterationmethod (VIM) [4] and homotopy-perturbation 

method (HPM)[5]. The BBM equation was introduced by Benjamin-Bona-Mahony, as an improvement of 

the Ko-rtewegde Vries equation (KdV equation). It describes the model for propagation of long waves which 

incorporates nonlinear and dissipative effects.  It is used in the analysis of the surface waves of long 

wavelength in liquids, hydro magnetic waves in cold plasma, acoustic-gravity waves in compressible fluids, 

and acoustic waves in harmonic crystals. Many mathematicians paid their attention to the dynamics of the 

BBM equation.The main mathematical difference between KdV and BBM models can be most readily 

appreciated by comparing the dispersion relation for the respective linearized equations. It can be easily seen 

that these relations are comparable only for small wave numbers and they generate drastically different 

responses to short waves. Recently, various authors have been proposed different methods to solving the 

different type of BBM equations [6, 13]. 

In numerical analysis, Wavelets are used as appropriate tools at various places to provide good 

mathematical model for scientific phenomena, which are usually modeled through linear or nonlinear 

differential equations.Haar wavelet method is one of them because of Haar functions appearing very 

attractive in many applications.The previous work in wavelet analysis via Haar wavelets was led by Chen 

and Hsiao [2], who first derived a Haar operational matrix for the integrals of the Haar function and put the 

application for the Haar analysis into the dynamic systems. In order to take the advantages of the local 

property, many authors researched the Haar wavelet to solve the differential and integral equations [7-12]. 

The objective of the present work is to apply the Haar wavelet method(HWM) for the numerical 

solution of different types of Benjamin-Bona-Mahony equations and obtained results are compared with the 

classical FDM and exact solution. The present method is illustrated by some of the Benjamin-Bona-Mahony 

equations. 

The present paper is organized as follows; in section 2, Haar wavelets and its generalized operational 

matrix of integration are given. Haar Wavelet Method for solving Benjamin-Bona-Mahony equationsis 

presented in section 3. Section 4 deals with the numerical Experiment, results and error analysis of the 

illustrative problems. Finally, conclusion of the proposed work is discussed in section 5. 
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2. Haar wavelets and Operational matrix of integration 

We used the simplest wavelet function i.e Haar wavelet. We establish an operational matrix for 

integration via Haar wavelets. 

The scaling function 1( )h x  for the family of the Haar wavelets is defined as  

 
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( )

0,

for x
h x

Otherwise
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                                                            (2.1) 

The Haar wavelet family for  [0,1)x   is defined as 
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In the above definition the integer 2 , 1,2,...,lm l J  , indicates the level of resolution and 

integer 0,1,2,..., 1k m   is the translation parameter. Maximum level of resolution is .J  The index i  in Eq. 

(2.2) is calculated using 1i m k   . In case of minimal values 1, 0,m k  then 2i  . The maximal 

value of iis 12JN  . 

Let us define the grid points ? 0.5) / , 1, 2,..., ,jx j N J N   discretize the Haar function ( )ih x , in 

this way we get Haar coefficient matrix    , ji
H i j h x  which has the dimension N N .The operational 

matrix of integration is obtained by integrating (2.2) is as 

0
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These integrals can be evaluated by using equation (2.2) and they are given by 

                              

0.5
, ,

1 0.5 1
( ) , ,

0,

i

k k k
x for x

m m m

k k k
Ph x x for x

m m m

Otherwise

  
   

 
    

   
 





                                         (2.6) 



S. C. Shiralashetti et al.: Haar Wavelet Method for the Numerical Solution of Benjamin–Bona–Mahony Equations 

 

JIC email for contribution: editor@jic.org.uk 

138 

                                

2

2

2

2

1 0.5
, ,

2

1 1 1 0.5 1
, ,

( ) 4 2

1 1
, , 1

4

0,

i

k k k
x for x

m m m

k k k
x for x

Qh x m m m m

k
for x

m m

Otherwise

    
    

   


               


     



                       (2.7) 

and 

                               

2

2

2

2

1 0.5
1 , ,

2

1 1 1 0.5 1
1 , ,

( ) 4 2

1 1
, , 1

4

0,

i

k k k
for x

m m m

k k k
for x

Ch x m m m m

k
for x

m m

Otherwise

    
    

   


               


     



                        (2.8) 

For instance, 2J   N = 8, then from (2.2), (2.6), (2.7) & (2.8) we have 
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and                                

. 

3. Haar Wavelet Method for solving Benjamin-Bona-Mahony equations 

Consider the general Benjamin-Bona-Mahony equation of the form: 

( , )t x x xxtu u uu u x t                                                           (3.1) 

with the initial conditions  

 ( ,0) ( ), 0 1u x f x x                                                              (3.2) 

 and the boundary condition 

0 1(0, ) ( ) , (1, ) ( ) 0u t g t u t g t t                                         (3.3)   

where 0 1( , ), ( ), ( ), ( )x t f x g t g t are functions of independent variables and ,  are constants. 

Let us assume that  
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                                                       (3.4) 

where . 'and  are differentiation w.r.t. t  and x respectively& ' , 1,2,...,ia s i N are Haar coefficients to 

be determined.  
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where st  is the initial time and st t t    is the time interval.  

Also integrating (3.5) w.r.t. x from 0 to x , we get 
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Put 1x   in (3.8) and by using equation (3.3) (i.e. boundary conditions), we get 
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Substituting the equation (3.9) in (3.8), then the equation (3.8) becomes 
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Differentiating equation (3.10) w. r. t. t   then we have 

                         0 1 0

1 1
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Substituting equations (3.4), (3.6), (3.10) and (3.11)in equation(3.1) and by solving using Inexact 

Newton’s method [10], we obtain the Haar wavelet coefficients 'ia s . Substituting these values of 'ia s in 

(3.10), we get the HWM based numerical solution of the given problem (3.1). The error will be calculated 

by max ( , ) ( , )e aL u x t u x t   , where ( , )eu x t  and ( , )au x t  are exact and approximate solutions 

respectively. 

4. Numerical Experiment  

In this section, we apply the HWM discussed in section 3 to some of the BBM type of equations. 

Problem 1. Consider the linear BBM equation of the form [3]  

                                                       2 0t xxt xu u u                                                              (4.1)                                                                    

with initial condition:     

( ,0) , 0 1xu x e x                                                              (4.2)                   

and boundary conditions:  
1(0, ) , (1, ) 0t tu t e u t e t                                                  (4.3) 

Let                  
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Using (4.2)& (4.3), then the equations (3.4), (3.6), (3.10) and (3.11) becomes 
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Substituting (4.5), (4.6) and (4.8) in (4.1), we get 
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                                (4.9) 

By solving (4.9), we get the Haar wavelet coefficients 'ia s  using Inexact Newton’s method [10]. i.e.[-

0.55, -0.14, -0.09, -0.05, -0.05, -0.04, -0.03, -0.02]. Substituting these 'ia s in (4.7), we obtain the HWM 

based numerical solution of the equation (4.1) and is compared with the FDM and exact 

solution ( , ) x tu x t e   in Table 1 for N= 8 and Fig. 1 for N=32. The error analysis for higher values of N is 

given in Table 2 with 1t
N

  . 

Problem 2.  Next consider the linear non-homogenous BBM equation of the form [14]  

2 x t

t xxtu u e                                                              (4.10) 

With initial condition:                     

 ( ,0) , 0 1xu x e x                                                (4.11)  

and boundary conditions: 
1(0, ) , (1, ) , 0t tu t e u t e t                                                (4.12) 

Using (4.11)& (4.12), then the equations (3.4), (3.10) and (3.11) becomes 
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( , ) ( )
N

i i

i

u x t a h x


                                                                           (4.13)   

                                                                       

 

  (4.14) 
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 

 
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                                         (4.15) 

Substituting (4.13and (4.15) in (4.10), we get 

 

1

1 1 1

( ) ( ) 2 ( ) 0
N N N

t t t x t

i i i i i i

i i i

a Qh x e x e a Ch x e a h x e 

  

 
       

 
          (4.16) 

Equation (4.16) can be solved, we get the Haar wavelet coefficients 'ia s  using Inexact Newton’s 

method [10].We obtain Haar coefficients 'ia s i.e. [1.95, -0.47, -0.18, -0.30,-0.08,     -0.10, -0.13, -0.17]. 

Substituting these 'ia s in (4.14), we get the HWM based numerical solution of the equation (4.10) and is 

compared with theFDM &exact solution ( , ) x tu x t e   in Table 3 forN= 8 and Fig. 2 for N=32. The error 

analysis for higher values of N is given in Table 4 with 1t
N

  . 

Problem3. Nowconsider the non-linear BBM equation[3] 

0t xxt xu u uu                                                          (4.17) 

with initial condition:  

                    ( ,0) , 0 1u x x x                                                         (4.18)  

and boundary conditions: 

1
(0, ) 0, (1, ) , 0

1
u t u t t

t
  


                                 (4.19) 

Using the conditions (4.18) & (4.19), the equation (4.17) can be solved as explained in Section (3) and 

we get Haar coefficients 'ia s i.e. [0.05, -0.03, -0.01, -0.02, -0.01,-0.01, -0.01,-0.01]. Substituting 

1 1

1 1

( , ) ( ) 1 ( ) 1
N N

x t t t

i i i i

i i

u x t t a Qh x e e x e t a Ch x e e

 

 
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 
 
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thesevalues of 'ia s   in (3.10), we obtain the HWCM based numerical solution of the equation (4.17) and is 

compared with the FDM &exact solution ( , )
(1 )

xu x t
t


 in Table 5 for N= 8 and Fig. 3 for N=32. The 

error analysis for higher values of N is given in Table 6 with 1t
N

  . 

Table 1: Comparison of FDM and HWM with Exact solutions for N=8 of the Problem 1. 

x=(/16) FDM HWM Exact 

1 0.82942254    0.82957675    0.82902911 

3 0.73277957 0.73244494 0.73161562 

5 0.64756878 0.64621771 0.64564852 

7 0.57245382 0.56995069 0.56978282 

9 0.50625604 0.50267060 0.50283157 

11 0.44793598 0.44342497 0.44374731 

13 0.39657711 0.39130681 0.39160562 

15 0.35137142 0.34546659 0.34559075 
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Fig. 1. Comparison of HWM and FDM with Exact solutions for N=32 of the Problem 1. 

 
 

Table 2. Error analysis of the Problem 1. 

 

 

 

 

 

 

 

 

 

 

Table 3. Comparison of FDM and HWM with Exact solutions for N=8 of the Problem 2. 
 

x=(/16) FDM HWM Exact 

1 1.15741935 1.20750077    1.20623024 

3 1.35750043 1.36926498 1.36683794 

5 1.57881432 1.55109039 1.54883029 

7 1.82434828 1.75639170 1.75505465 

9 2.09744632 1.98892088 1.98873746 

11 2.40185758 2.25280954 2.25353478 

N L (FDM) L (HWM) 

8 5.7806E-03 8.2932E-04 

16 5.4363E-03 5.4368E-04 

32 3.4051E-03 3.1094E-04 

64 1.8811E-03 1.6478E-04 

128 9.8606E-04 8.4782E-05 

256 5.0452E-04 4.2993E-05 
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13 2.74179096 2.55257492 2.55358945 

15 3.12197659 2.89308458 2.89359594 
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Fig. 2. Comparison of HWM and FDM with  Exact solutions for N=32 of the Problem 2. 

 

Table 4. Error analysis of the Problem 2. 
 

 

 

 

 

 

 

Table 5. Comparison of FDM and HWM with Exact solutions for N=8 of the Problem 3. 

x=(/16) FDM HWM Exact 

1 0.05887280 0.05553306    0.05555555 

3 0.17667011 0.16650168  0.16666666 

5 0.29462366 0.27740622  0.27777777 

7 0.41284152 0.38831388    0.38888888 

9 0.53143772 0.49928377  0.50000000 

11 0.65053500 0.61036975   0.61111111 

13 0.77026763 0.72162043   0.72222222 

15 0.89078469 0.83307583    0.83333333 

 
 

 

 

 

 

 

Table 6. Error analysis of the Problem 3 
 

N L (FDM) L (HWM) 

8 2.2838E-01 2.4270E-03 

16 1.2617E-01 1.4431E-03 

32 6.6174E-02 7.7915E-04 

64 3.3869E-02 4.0254E-04 

128 1.7132E-02 2.0450E-04 

256 8.6155E-03 1.0305E-04 
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Fig. 3. Comparison of HWM and FDM with Exact solutions for N=32 of the Problem 3. 

5.  Conclusion 

In the present study, numerical solution of Benjamin-Bona-Mahoney (BBM) equations is discussed 

using Haar wavelets method. The proposed method is computationally efficient and the algorithm can be 

easily implemented on computer, which has been justified through the illustrative problems. The numerical 

solutions are presented in Tables and figures, from which we observed that Haar wavelet gives better results 

with less computational cost: it is due to the sparsity of the transform matrix and small number of wavelet 

coefficients subsequently error analysis is presented, which shows that the accuracy of the solution is 

increased by increasing the number of grid points (i.e. N).Hence the proposed method is very effective and 

easy to implement for solving linear as well as non-linear Benjamin-Bona-Mahoney (BBM) equations. 

6. References  

[1] A.M.Wazwaz, Nonlinear Variants of KDV and Application to Thin Film Flow.Central European Journal of 

Physics, KP Equations with Compactons, Solitons and Periodic, 3(2005), 648-653. 

[2] C. F. Chen, C. H. Hsiao, Haar wavelet method for solving lumped and distributed parameter systems, IEE-Proc. 

Control Theory Appl,144 (1997), 87-94. 

[3] D.D. Ganji, H. Tari, M. B.Jooybari,Variational iteration method and homotopy perturbation method nonlinear 

evolution equations, Computers and Mathematics with Applications 54 (2007), 1018–1027. 

[4] J.H.He, Variational Iteration Method-A Kind of Non-Linear Analytical Technique: Some Examples. International 

Journal of Non-Linear Mechanics, 34(1999), 699-708.  

[5] J.H.He, Homotopy Perturbation Technique. Computer Methods in Applied Mechanics and Engineering, 178(1999), 

257-262. 

[6] N. A. Larkin, and M. P. Vishnevskii, 2008. Dissipative initial boundary value problem for the BBM-equation, 

ElectronicJournal of Differential Equations, 149, 1-10. 

[7] N. M. Bujurke, S. C. Shiralashetti, C. S. Salimath, An Application of Single-term HaarWavelet Series in the 

Solution of Nonlinear Oscillator Equations, Journal ofComputational and Applied Mathematics, 227 (2010), 234 - 

244. 

[8] N. M. Bujurke, C. S Salimath, S. C. Shiralashetti, Numerical Solution of Stiff Systems from Nonlinear Dynamics 

Using Single-term Haar Wavelet Series, Nonlinear Dyn (2008)  51:595 - 605. 

[9] N. M. Bujurke, S. C. Shiralashetti, C. S. Salimath, Computation of eigenvalues and solutions of regular Sturm-

Liouville problems using Haar wavelets, J. Comput. Appl. Math. 219 (2008) 90-101. 

N L (FDM) L (HWM) 

8 5.7451E-02 7.4135E-04 

16 2.9979E-02 2.1049E-04 

32 1.5306E-02 5.6012E-05 

64 7.7325E-03 1.4456E-05 

128 3.8862E-03 3.6730E-06 

256 1.9481E-03 9.2572E-07 



Journal of Information and Computing Science, Vol. 11(2016) No. 2, pp 136-145 

 

 

JIC email for subscription: publishing@WAU.org.uk 

145 

[10] R. S. Dembo, S. C. Eisenstat, T.Steihaug. Inexact Newton Methods. SIAM J. Numer.Anal, 19(1982), 400-408. 

[11] U.Lepik, Numerical solution of differential equations using Haar wavelets, Mathematics and Computers in 

Simulation, 68(2005), 127-143. 

[12] U.Lepik, Application of the Haar wavelet transform to solving integral and differentialEquations,Applied 

Mathematics and Computation,56(1)(2007), 28-46. 

[13] Y. Yu, and H. C. Ma, 2010. Explicit solutions of (2+1)-dimensional nonlinear KP-    BBM equation by using Exp-

functionmethod, Appl. Math. Comput. 217, 1391-1397. 

[14] Z. Sarmast, B. Soltanalizadeh, K. Boubaker, A new numerical method to study a second-order hyperbolic equation, 

South Asian Journal of Mathematics, 4 ( 6 ) (2014), 285-296. 


