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Abstract. The sparseness adaptive matching pursuit algorithm (SAMP) is a classical algorithm based on 

compressed sensing theory. Aiming at reconstructing signals with unknown sparsity, an adaptive step 

forward-backward matching pursuit algorithm (AFBMP) is presented. The AFBMP select matching atoms in 

the forward processing by using logarithmic variable steps which under the frame of sparseness adaptive 

matching pursuit algorithm. At the beginning of iterations, high value of step size, causing fast convergence 

of the algorithm is used to realize the coarse approach of signal sparse, and in the later smaller value of step 

size is used to realize the precise reconstruction of the sparse signal which equal to half of the previous step. 

Then AFBMP amend the mistakes which caused in the former stage and delete part of the false atoms in the 

support set using the backward strategy. Finally it realizes the signal accurately approximate. Experiments 

show that the AFBMP algorithm can reconstruct the unknown signal more efficiently. 

Keywords: Compressed Sensing, Reconstruction Algorithm, Forward-Backward, Sparseness Adaptive, 

Matching Pursuit Algorithm 

1. Introduction  

 Compressed Sensing theory [1-2] (CS) is a new way to reconstruct signal or image. If the compression ratio is 

high, the reconstruction error is very small by the CS. In addition, it can compress the data with the data collecting, so 

the CS can save time and the efficiency is high. 

The reconstruction algorithm is the core of the CS and its aim to achieve the original signal based on low 

dimensional data observed as much as possible. With the development of the CS theory, more and more reconstruction 

algorithms were proposed in recent years. At present, the common reconstruction algorithm can be divided into three 

categories: the combinatorial optimization reconstruction algorithm, the convex optimization algorithm and the greedy 

iterative algorithm. The reconstruction of combinatorial optimization algorithm is good, but not practical. The convex 

optimization algorithm is too complicated, so that it is not practical too. Such as the Basis pursuit algorithm (BP) [3] is 

one of the convex optimization algorithm. In recent years, the greedy iterative algorithm is more and more popular, 

because the accuracy of the reconstruction is high and it is convenient to realize. Such as the Matching Pursuit 

algorithm(MP)[4],the Orthogonal Matching Pursuit algorithm(OMP)[4-5],the Regularized Orthogonal Matching Pursuit 

algorithm (ROMP)[6],the Compressive sampling Matching Pursuit algorithm(CoSaMP) [7],the Subspace Pursuit 

algorithm(SP)[8]and the Sparseness Adaptive Matching Pursuit algorithm(SAMP)[9-10]etc. We all know the linear 

programming method can ensure the accuracy of the original signal in a certain number of iterations, but the structure of 

the algorithms is too complicated, so these algorithms can’t be widely applied. The greedy iterative algorithm is famous 

for the fast speed of reconstruction, but we need to know the sparsity of the greedy algorithm in advance. Unfortunately, 

we can’t get the sparsity in practice. In addition, if the sparsity is fixed, the algorithm may affect the precision of the 

reconstruction. 

The Sparseness Adaptive Matching Pursuit algorithm (SAMP) is an improvement algorithm. It breaks through the 

traditional of the previous algorithm which need to know the sparisity. The algorithm solves the problem of the 

reconstruction in the case of unknown sparisity for the first time. The reconstruction speed of SAMP mainly depends on 

the choice of fixed step. If the step size is too large, the reconstruction speed is high and the reconstruction accuracy is 

low. At the same time, it may cause over estimation. In contrast, if the step size is too small, the reconstruction speed is 

slower and the reconstruction accuracy is high. Then it may cause under estimation. We all know the SAMP belongs to 

the forward greedy algorithm and cannot delete redundant atoms. Then some scholars propose some improved 

algorithms. MSAMP [11] use atom matching test firstly and get the sparsity of the signal. Then it achieves reconstruction 

in the framework of SAMP. But in the stage of “big step” or “small step”, the step value is still a fixed value. So 

MSAMP may cause over estimation or under estimation. LSAMP [12] use logarithmic variable step and solve the over 

estimation or under estimation problem by controlling the dual threshold. The reconstruction effect is still good when 

the sampling rate is low. However, these algorithms are essentially forward greedy algorithms, the biggest drawback of 

forward greedy algorithm is that the error caused by the previous step iteration can’t be modified, once the atom is 

selected to support set, it will not be deleted. For example, figure 1 supposes that feature vector x  is formed 

by
1 2,  which in the observation matrix. While the other vector 3 is more close to the feature, it will choose 3 firstly 
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and cannot delete the wrong vector. This result is not what we want. In fact, the forward greedy algorithm is available 

when the observation matrix is not relevant. 

 
                               Figure 1 

Now we can exploit the backward greedy algorithm to improve the shortcomings. It first selects the relevant atoms 

and then deletes the atoms one by one for the reconstruction error is smallest. Therefore, according to these two means, 

an adaptive step forward-backward matching pursuit algorithm is proposed. The new algorithm uses an improved 

logarithmic variable step in each stage and can delete the redundant atoms. So it can ensure the reconstruction accuracy 

and overcome the shortage of other algorithms. 

Our paper is organized as follows: Section 2 introduces the theory of compressed sensing and reconstruction 

algorithm. Section 3 introduces the Sparsity Adaptive Matching Pursuit algorithm. Section 4 introduces the adaptive 

step forward-backward matching pursuit algorithm in detail. Section 5 compares the new algorithm with the common 

reconstruction algorithm by experiments. Finally, we get the conclusion. 

 

2. The theory of compressed sensing and reconstruction algorithm 

The compressed sampling theory pointed out that as long as the signal was sparse, we could reconstruct the signal 

by low dimensional linear observed matrix. 

Suppose x is the original signal and its length is N .The sparsity is K .Set y is the observed signal and its length 

is M .Let ( )M N M N  denotes the measurement matrix. According to the theory of Compressed Sensing, y can 

be expressed as: 

y x                                                                                         (1) 

  What we want to know is how to reconstruct x  form the observed signal y .We usually solve the following 

optimization problem[13-15]: 

0
min , . .x s t y x                             (2) 

Obviously, if M N , equation (1) is a system of indeterminate equations. Then the equations have more than 

one solution. Equation (2) is a Non-deterministic Polynomial [12]. It is hard to get the solution. But when x is sparse 

enough and   meet the Restricted Isometry Property (RIP) [16-17]: 
2 2 2

2 2 2
(1 ) (1 )K Kx x x                              (3) 

Where (0,1)K  denotes restricted isometry constant degree and K is the sparsity. Now, solving equation (2) is 

equivalent to solve 1l norm minimization problem: 

1
min , . .x s t y x                            (4) 

The matching pursuit algorithm provides a powerful tool to achieve the solution. OMP algorithm can 

ensure the result of each iteration is optimal by orthogonal for the selected atoms and reduce the number of 

iterations. Then one scholar puts forward the regularization orthogonal matching pursuit algorithm. The 

algorithm selects multiple relates atoms as the candidate set each iteration. Then they use a regularization 

method to the candidate set and get a new support set. Finally they achieve the reconstruction of atoms. But 

these methods are based on the sparsity is known. In practical, signal sparsity is often unknown which brings 

a big challenge to signal reconstruction. So .Thong T Do proposed the sparsity adaptive matching pursuit 

algorithm for the first time and solved the problem of the sparsity was unknown. The algorithm achieves 

signal reconstruction by fixed step. 

 

3. SAMP 

1

2

3

x
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The SAMP algorithm can achieve the reconstruction of sparse signals quickly and accurately under the 

sparsity is unknown. The optimal sparsity can be approached by adjusting the step a stage to a stage. Firstly, the SAMP 

algorithm calculates the absolute value of the inner product of the residual r and each column of the observed 

matrix .Secondly, it selects size atoms which the correlation coefficients are optimal and combines the previous 

support set as candidate set. The size is the length of the support set. Then it calculate the inner product of the residual 

and the atoms of the candidate set and select size atoms which the correlation coefficients are optimal as a new support 

set F and update the residual 
newr .If the 

newr r ,enter the next stage and update the length of the support 

set size size step  .Until the residual r is less than a certain threshold. If the new residual less than the residual, 

you should continue the iteration. 

The core of the algorithm as follows: 

(1) Initialization: residual r y , the length of the support set size step , 1stage  , index set S  , the 

number of iteration is 1,the support set F . 

(2) Calculate the absolute value of the inner product of the residual r and each column of the observed 

matrix .Then select size atoms which the correlation coefficients are supreme as the index set S . 

(3) Combine the index set and the support set as the candidate set C F S  .Then calculate the absolute value 

of the inner product of the residual and the candidate set. At last, select size atoms which the correlation 

coefficients are supreme as a new support set F . 

(4) Update the residual
'

new F Fr y y   . 

(5) If 
2 2newr r , update the iterative phase 1stage stage  and the length of the support 

set size stage step  ,then go to step (2). Or update the support set newF F  and the residual
newr r . 

Let the number of iteration k=k+1.go to step (2). 

We know the step size of each stage form the above algorithm is constant. So the selection of the step 

size is the key to the reconstruction accuracy of the algorithm. But the biggest drawback of the algorithm is 

that it can’t delete the wrong atoms and produce some errors. In order to solve these problems, this paper 

proposed an adaptive step forward-backward matching pursuit algorithm based on SAMP. 

 

4. Adaptive step forward-backward matching pursuit algorithm 

The SAMP breaks the limitation of the traditional for sparsity. But the step size of each stage is fixed. Related 

experiments show that when the initial step is large, the algorithm needs less number of iterations. The efficiency of the 

algorithm is high but the precision of the sparsity will drop. On the contrary, when the initial step is small, the algorithm 

needs more iterations and the precision of the sparsity is high. So we may miss the best sparsity when the step is fixed. 

How to select a suitable step is the key to improve the algorithm of signal reconstruction precision. The experiments of 

the literature [12] show that with the increasing of the support set without more than real sparsity, the signal 

reconstruction energy difference of two adjacent iteratives is more and more small. These Experiments tell us with the 

increase of the number of iterations, we should increase the step size slowly and use “small step” instead of “large step” 

approaching the sparsity. 

At the same time, with the increasing of the number of iterations the support set capacity is increasing. This will 

produce some unnecessary atoms in the support set. So according to the characteristics of the logarithmic function and 

the processing of SAMP, we propose an adaptive step forward-backward matching pursuit algorithm. The new 

algorithm adds the ideas of backward eliminating redundancy atoms and makes up for the greedy algorithm. Next we 

will describe the new algorithm from two aspects: step selection and algorithm steps. 

4.1  Step Selection 
Literature [12] shows that when the support set size do not reach the real sparsity, the signal energy difference of 

two adjacent iterative decreasing rapidly initially. Then it tends to be stable. Inspired by this thought, we adopt variable 

step. In the initial iterative phase, we use the “large step”. With the increase of the number of iterations, we adopt the 

“small step” instead of “large step”. Then we set two thresholds 1 2,  . If 1 1t tx x   , we use “large step”. If 

2 1 1t tx x    , we use “small step”. If 1 2t tx x   , it shows that the energy difference tends to stable and 

we can make it as a condition of termination. 

Based on the above ideas and the characteristics of the logarithmic function, we suppose the “large step”: 

2( ) logstep s a s b                               (5) 
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where [1, ]s stage . When s=1, the initial step is

2

(1)
2 log

c M
step

N





.The maximum step size is equal to the length 

of the signal ( )step stage N .So we can solve (5) and obtain a function of the step: 

2
2

2 2

2 log
( ) log

log 2 log

c M
N

N c M
step s s

stage N




 
 


                    (6) 

When we need “small step”, we can put the half step of the current stage as the “small step”: 

2
2

2 2

2 log1
( ) log

2 log 2 log

c M
N

N c M
step s s

stage N

 
  

  
 

  

                  (7) 

Though setting suitable thresholds, we can get the step of each stage: 

2
2 1 1

2 2

2
2 2 1 1

2 2

2 log
log

log 2 log

( )

2 log1
log

2 log 2 log

t t

t t

c M
N

N c M
s x x

stage N

step s c M
N

N c M
s x x

stage N



 






  

   



   

   
     

  
   

当 时

当 时

 

All steps are positive integers. 1( )c c N   .M represents the length of the observed signal and N represents the 

length of the estimated signal. 1 2  . 

4.2 . Algorithm Steps 

 

(1) Initialization: residual r y , the support set F , the length of the support set size step , 1stage  , the 

number of iteration t=1, index set S  ,the candidate set C  ; 

(2) Calculate the correlation coefficients. Then select size atoms which the correlation coefficients are optimal as 

the index set S . 

(3) Combine the index set and the support set as the candidate set C F S  .Then calculate the absolute value 

of the inner product of the residual and the candidate set C . At last, select size atoms which the correlation 

coefficients are optimal as a new support set F . 

(4) Then we can get 1 2
arg mint F tx y x   .Update the residual

1t t tr y x   . 

(5) If 1 1t tx x   go to step (6), or go to step (8). 

(6) If 1t tr r   go to step (7), or go to step (9). 

(7) Enter the next stage. 1stage stage  .We can get a new step by formula (6) and expand the support 

set size size step  , 1t t  , return to step (2). 

(8) If 1 2t tx x   , stop the iteration, or go to step (10). 

(9) Update the support and residual. Then return to step (2). 

(10) Enter the “small step”. 1stage stage  .We can get a new step by formula (7) and expand the support 

set size size step  , 1t t  , return to step (2). 

(11) Suppose
2

2
( ) (1/ 2) F tq F y x  . 

(12) argmin ( / )i Fj q F i . 

(13) ( / ) ( )d q F j q F   . 

(14) 3d   . 
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(15) If d d  ,delete jx and update the support set. Then return to (11),until d d  . 

The step 2-10 select the relevant atoms and the step 11-15 delete the wrong atoms. The new algorithm has two 

advantages. One is that the adaptive step can avoid over estimation and under estimation problem. It adds to backward 

step so that the algorithm can delete some wrong atoms. The new algorithm not only can improve the accuracy of the 

reconstruction, but also can reduce the reconstruction time. 

5. Experiments and analysis  

In order to verify the validity of the new algorithm, we choose the MATLAB as the processing platform. We 

use one dimensional Gaussian sparse signal and its length is N=256. The observed matrix is the Fast Fourier Transform 

matrix (FFT). 
6

1 e  .
12

2 e  . 
14

3 e  . In order to illustrate the effectiveness of the new algorithm further, we 

compare SAMP, MSAMP, LSAMP with the new algorithm(AFBMP) under different sampling rate of refactoring. All 

the parameters of the other algorithms in this paper are set according to the original reference. 

 
Figure 2  the signal noise ratio of the reconstructed signal under different sampling rate 

Figure 2 denotes the signal noise ratio of some algorithms under different sampling rate. The horizontal ordinate 

represents the sampling rate and the longitudinal coordinate represents the signal noise ratio (SNR). The results of the 

experiment show that the algorithm enhances the performance by using the logarithmic steps and adding the backward 

thought. The algorithm enhances the precision of the original signal reconstruction significantly. 

 

Figure 3 represents the refactoring relative error of four algorithms under different sampling rate. The experiments 

show that the relative error is high of the previous algorithms. We know MSAMP and LSAMP enhance the 

performance of the reconstruction and reduce the relative error. The new algorithm combines the advantages of 

previous algorithms and makes the relative error lower. So we can say the new algorithm guarantee the reconstruction 

accuracy. The experiments also prove the effectiveness of the algorithm. 

In order to explain the application of the new algorithm to the practical problems, we test some images which the 

size is 256*256. Then we compare SAMP, MSAMP with AFBMP. Figure 4 shows that the improved algorithm is better 

than the classical algorithm, and the reconstruction effect of the algorithm is better than other algorithms. 

Table 1 is the running time of the three sets of test charts. The sampling rate is 0.5. We can see that in the same 

sampling rate, the reconstruction time of different algorithms is different, and the reconstruction time of the algorithm is 

lower than that of the traditional algorithm. 

 



Songjiang Zhang et al.: Adaptive step forward-backward matching pursuit algorithm 

 

 

JIC email for contribution: editor@jic.org.uk 

158 

 
Figure 3 the relative error of the algorithms under different sampling rate 

Original                    SAMP                    MSAMP     AFBMP 

    

    

    
Figure 4 Two dimensional image reconstruction effect 
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 SAMP MSAMP AFBMP 

test1 

test2 

test3 

55.338 

54.389 

54.285 

56.173 

53.522 

53.771 

54.568 

54.095 

54.116 

Table 1 reconstruction time of different image reconstruction algorithms 

 

6. Conclusions 

This paper studies the classic algorithm of the compressed sensing theory deeply. According to the frame of SAMP, 

this paper proposes an improved backward and step adaptive matching pursuit algorithm under the condition of the 

sparsity is unknown. SAMP may lead to over estimation or under estimation problem using the fixed step and SAMP 

cannot delete the redundant atoms after the iterations. According to these questions, we use the logarithmic step and 

backward thought under the frame of SAMP. The new algorithm set two thresholds to control the step selection and 

stop criterion. Then realize the sparsity of approximation gradually and finish the task of reconstruction of signal. The 

experiments show that the new algorithm can well realize the reconstruction under the sparsity is unknown and the 

quality of the reconstruction is superior to other algorithms. 
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