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Abstract. In this paper we present the haar wavelet based numerical solution of the highly nonlinear with 

coupled differential equation, i. e., elasto-hydrodynamic lubrication with line contact problems. It is a new 

alternative approach and we explore its perspectives and effectiveness in the analysis of elasto-hydrodynamic 

lubrication problems. To confirm its versatile features solutions obtained, using haar wavelet based method, 

are compared with existing method. 
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1. Introduction  

Wavelet analysis is capable of giving rich and useful description of a function based on a family of basis 

functions called wavelets. Recently, wavelet analysis has become an important tool in various research areas. 

The wavelet transform is notable for its ability in time–frequency localization and multi-resolution 

representation of transient non-stationary signals. Some of the haar wavelet based techniques has been 

successfully used in various applications such as time–frequency analysis, signal de-noising, non-linear 

approximation and solving different class of equations arising in fluid dynamics problems (Chen and Hsiao 

[1], Hsiao and Wang [2], Hsiao [3], Lepik [4-6], Bujurke et al. [7-9] and Islam [10]). 

Highly nonlinear and singularity in fluid flow problems is a difficult in numerical simulation. In numerical 

weather prediction and numerical simulation, the most common methods used are the finite difference method 

(FDM) on a uniform grid and the spectral method. Since the computational cost of the spectral method is rather 

large, the FDM is the preferable method at present. The grid space of a uniform grid is restricted to the 

minimum scale of the synoptic processes concerned. In numerical simulation of a highly nonlinear and 

singularity, a high resolution is necessary to get a good accuracy. However, this type of problems it is not 

reasonable to use a fine resolution grid uniformly across the whole domain (the storage and computational cost 

is very big). To overcome this, it requires the efficient method i.e., haar wavelet method. The main aim of this 

paper is to present haar wavelet collocation method (HWCM) to solve elasto-hydrodynamic lubrication 

problems and it has been widely applied in the field of science and engineering numerical simulation. 

The present work is organized as follows, in section 2, Wavelet Preliminaries are given. Section 3, 

discusses about the method of solution. Numerical experiments are presented in section 4. Results and 

discussions are given in section 5. Finally, conclusion of the proposed work discussed is in section 6. 

2. Wavelet preliminaries 

2.1. Multi-resolution analysis 

The understanding of wavelets is through a multi-resolution analysis. Given a function 2 ( )f L  a 

multi-resolution analysis (MRA) of 2 ( )L  produces a sequence of subspaces 1, , . . .j jV V   such that the 

projections of f onto these spaces give finer and finer approximations of the function f as j  . 

A multi-resolution analysis of 2 ( )L  is defined as a sequence of closed subspaces 2 ( ),jV L j   

with the following properties 
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(i) 1 0 1. . . . . .V V V    . 

(ii) The spaces jV  satisfy jj V  is dense in 2 ( )L  and 0jj V  . 

(iii)  If 0( ) , (2 )j
jf x V f x V  , i.e. the spaces jV  are scaled versions of the central space 0V . 

(iv)  If 0( ) , (2 )j
jf x V f x k V    i.e. all the jV  are invariant under translation. 

(v) There exists 0V   such that ( );x k k    is a Riesz basis in 0V . 

The space jV  is used to approximate general functions by defining appropriate projection of these 

functions onto these spaces. Since the union of all the jV  is dense in 2 ( )L , so it guarantees that any function 

in 2 ( )L  can be approximated arbitrarily close by such projections. As an example the space jV  can be 

defined like 

1 1 2 2 0

1

1
. . .j j jj j j j

J

j
V W V W W V W V   




         

then the scaling function ( )jh x  generates an MRA for the sequence of spaces  ,jV j  by translation 

and dilation. For each j the space j
W  serves as the orthogonal complement of jV  in 1jV  . The space jW  

include all the functions in 1jV   that are orthogonal to all those in jV  under some chosen inner product. The 

set of functions which form basis for the space jW  are called wavelets [10]. 

2.2. Haar wavelets 

The scaling function 1 ( )h x for the family of the Haar wavelets is defined as  

                                        
 

1

1 1, 0
( )

0

for x
h x

otherwise

 
 


                                                                (1)  

The Haar wavelet family for  1, 0x  is defined as  

0.5
1 ,

0.5 1
1 ,

0

( )i

k k
for x

m m

k k
for x

m m

otherwise

h x




 
 

  
  


  
  




                                                    (2) 

In the above definition the integer, 2 , 0, 1, . . . ,lm l J  , indicates the level of resolution of the 

wavelet and integer 0, 1, . . . , 1k m   is the translation parameter. Maximum level of resolution is J .  

The index i  in Eq. (2) is calculated using, 1i m k   . In case of minimal values 1, 0m k  , then 

2i  . The maximal value of i  is 12JK  . Let us define the collocation points 

0.5
, 1, 2, . . . ,p

p
p K

K
x


 , discretize the Haar function ( )ih x  and the corresponding Haar 

coefficient matrix ( , ) ( ( ))piH i p h x , which has the dimension K K . 

The following notations are introduced 
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                                             1,

0

( ) ( )
x

iiPH x h x dx                                                                   (3) 

                                         

0

, 1,
,( ) ( ) 2, 3, . . .

x

i in n
PHPH x x dx n


                                            (4) 

These integrals can be evaluated by using Eq. (2), first and nth operational matrices are as follows,        

                                  1,

0.5
,

1 0.5 1
,

0

( )i

k k k
x for x

m m m

k k k
PH x for x

m m m

otherwise

x


 

  
 

  
  


  
  




                                             (5) 

and 

,

1 0.5
,

1 0.5 0.5 1
2 ,

1 0.5 1 1
2 , 1

0

!

!( )

!

i

n

n n

n

n n n

k k k
x for x

m m m

k k k k
x x for x

m m m mPH

k k k k
x x x for x

m m m m

otherwise

n

nx

n


 

  
   

  
     

    
      
       
              


        
                




    (6) 

We also introduce the following notation 
1

0

1, ( )i iCH PH x dx                                                                    (7) 

Any function ( )f x  which is square integrable in the interval (0, 1) can be expressed as an infinite sum 

of Haar wavelets as 

1

( ) ( )i i
i

f x a h x




                                                                     (8) 

The above series terminates at finite terms if ( )f x  is piecewise constant or can be approximated as 

piecewise constant during each subinterval. 

3. Method of solution 

Consider the second order differential equation '' ( , , ')y f x y y  with the different boundary conditions, 

the method of solution is as follows: 

Assume that  

1

' '( ) ( )
K

i i
i

y x a h x


                                                                      (9) 

Case 1: Consider the initial conditions: 1(0)y A  and 1'(0)y B  

Integrating Eq. (9) with respect to x from 0 to x, we obtain 

1 1,
1

'( ) ( )
K

i i
i

PHy x B a x


                                                             (10) 

Integrating again Eq. (10) we get 

1 1 2,
1

( )
K

i i
i

y x A xB a PH


    
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1 1 2,
1

( )
K

i i
i

y x A xB a PH


                                                      (11) 

Case 2: Consider the mixed boundary conditions: 2'(0)y A  and 2(1)y B  

Integrating Eq. (9) with respect to x from 0 to x, we obtain 

2 1,
1

'( ) ( )
K

i i
i

PHy x A a x


                                                        (12) 

Integrating again Eq. (12) we get 

2 2,
1

( ) (0)
K

i i
i

y x y xA a PH


                                                     (13) 

Put x = 1 we get  

2 2 2 2

1 1

(0) (0)
K K

i i i i
i i

C CB y A a y B A a
 

                                 (14) 

From (13) and (14) we get  

2 2 2 2,
1 1

( )
K K

i i i i
i i

Cy x B A a xA a PH
 

                                             (15) 

Case 3: Consider the Dirichlet boundary conditions: 3(0)y A  and 3(1)y B  

Integrating Eq. (9) with respect to x from 0 to x, we obtain 

1,
1

'( ) '(0) ( )
K

i i
i

PHy x y a x


                                                     (16) 

Integrating again Eq. (16) we get 

3 2,
1

( ) '(0)
K

i i
i

y x A xy a PH


                                                   (17) 

Put x = 1 we get  

3 3 3 3

1 1

'(0) '(0)
K K

i i i i
i i

C CB A y a y B A a
 

                                  (18) 

From (17) and (18) we get  

3 3 3 2,
1 1

( )
K K

i i i i
i i

Cy x A x B A a a PH
 

 
    

 
                                    (19) 

3 3 3 2,
1 1

( )
K K

i i i i
i i

Cy x A x B A a a PH
 

 
    

 
                                    (20) 

By substituting the values of ( ), '( )y x y x  and ''( )y x  in given differential equation, we get the haar 

wavelet coefficients 'ia s . Finally, substitute these coefficients in ( )y x  we get the required solution of given 

differential equation. 

In order to view solid assessment of the accuracy of HWCM for differential equations arising in fluid 

dynamics, we use the two kinds of errors as, maximum absolute error and root mean squared error are 

( ) ( ) , 1, 2, . . . ,abs i iE y x y x i K    

max( )absL E   

1/2

2

1

1 K

rms abs

i

L E
K 

 
  
 
 . 

4. Numerical experiments  

In this section, we apply HWCM to solve differential equations arising in fluid dynamics. 

Example 4.1 Consider the Vander pol equation, 

10,cossinsin'''' 22  xxxxyyyyy                                  (21) 
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with the boundary conditions, 0)0(',1)0(  yy  and exact solution xxy cos)(  . The HWCM solution is 

obtained by the procedure as follows: 

We assume that  

1

' '( ) ( )
K

i i
i

y x a h x


                                                                (22) 

Eq. (22) is integrated twice from 0 to x, we get 

1,
1

'( ) 0 ( )
K

i i
i

y x a PH x


                                                           (23) 

2,
1

( ) 1
K

i i
i

y x a PH


                                                               (24) 

Substitute Eqns. (22) - (24) in Eqn. (21), we have 
2

2

1, 2, 2, 1,
1 1 1 1 1

sin sin cos

( ) ( ) 1 1 ( )
K K K K K

i i i i i ii i i i
i i i i i

x x x

a h x a PH x a PH a PH a PH x
    

   
     

   

 

     
           (25) 

Solve Eqn. (25), we get haar wavelet coefficients for 16K  , 

[-1.0028, -0.1214, 0.0306, -0.1477, 0.0389, -0.0082, -0.0543, -0.0912,

0.0254, 0.0135, 0.0018, -0.0100, -0.0216, -0.0326, -0.0421, -0.0486]

ia 
 

and then substituting these values in Eqn. (24), we obtain the HWCM based numerical solution of the given 

problem (21) and results are presented in Figure 1. The error analysis of the example 4.1 is presented in Table 

1. 

 

Figure 1. Comparison of HWCM solution with Exact solution for 128K   of Example 4.1. 
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Table 1. HWCM Error norms versus different values of K  of Example 4.1. 

K  L  rmsL  

4 6.218E-2 3.109E-2 

8 7.166E-2 2.534E-2 

16 7.659E-2 1.915E-2 

32 7.909E-2 1.398E-2 

64 8.035E-2 1.004E-2 

128 8.097E-2 7.157E-3 

 

Example 4.2 Consider nonlinear differential equation with variable coefficient [13] 

)1,0(,42)()('2)('' 623  xxxxyxxyxy                                               (26) 

with initial conditions 0)0(',0)0(  yy  and exact solution of the Eqn. (26) is 
2)( xxy  . 

Using the method explained in section 3 (case-1), we obtain the HWCM based numerical solution of the 

given problem (26), results are presented in Figure 2 and error analysis given in Table 2. 

 

Figure 2. Comparison of HWCM solution with Exact solution for 128K   of Example 4.2. 

Table 2. HWCM Error norms versus different values of K  of Example 4.2. 

K  
L  rmsL  

4 2.588E-9 1.294E-9 

8 2.927E-8 1.035E-8 

16 2.109E-15 5.274E-16 

32 3.442E-15 6.084E-16 

64 1.299E-14 1.624E-15 

Example 4.3 Consider the electrohydrodynamic flow of a fluid in an ion drag configuration in a circular 

cylindrical conduit was first reviewed by McKee [14]. A full description of the problem was presented in 

which the governing equations were reduced to the nonlinear boundary value problem (BVP) [15] as 
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'
1

'' 1- 0, 0 1
1-

y
y

y Ha x
x y

 
 
 

                                                   (27) 

subject to the boundary conditions  

'(0) 0, (1) 0y y                                                                  (28) 

where ( )y x  is the fluid velocity, x  is the radial distance from the center of the cylindrical conduit, Ha  is the 

Hartmann electric number, and the parameter   is a measure of the strength of the nonlinearity. Homotopy 

analysis method, Perturbative and numerical solutions to Eqs. (27) and (28) for small/large values of   were 

provided in [15, 16] proved the existence and uniqueness of a solution to Eqs. (27) and (28), and in addition, 

discovered an error in the perturbative and numerical solutions given in [14] for large values of  . Here, we 

use above explained procedure in section 3 (case-2). We obtain the HWCM based numerical solution of the 

given problem (27), results are presented in Figure 3 and residual error analysis given in Table 3. These 

numerical tests demonstrated that the HWCM for various values of the relevant parameters Ha, . 

To facilitate the error analysis of example 4.3, we substitute )(~ xy  (approximate solution) into Eqs. (27) 

to obtain the residual function. 

'
1

( ) '' 1-
1-

y
y

R x y Ha
x y

 
 
 

                                                       (29) 

 

(a) 0.5                                                               (b) 1   

 

(c) 2                                                               (d) 5   

Figure 3. Comparison of HWCM and HAM solution for 128K   of Example 4.3. 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x 

N
u
m

e
ri
c
a
l 
s
o
lu

ti
o
n
 (

y
)

Ha=1

Ha=4

Ha=2

Ha=10

Ha=15

Ha=25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

N
u
m

e
ri
c
a
l 
s
o
lu

ti
o
n
 (

y
)

Ha=1

Ha=2

Ha=4

Ha=10

Ha=15

Ha=25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

N
u
m

e
ri
c
a
l 
s
o
lu

ti
o
n
 (

y
)

 

 

Ha=1

Ha=2

Ha=4

Ha=10

Ha=15

Ha=25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x

N
u
m

e
ri
c
a
l 
s
o
lu

ti
o
n
 (

y
)

 

 

HWCM

HAM

HWCM

HAM

HWCM

HAM

HWCM

HAM

HWCM

HAM

HWCM

HAM

Ha=10

Ha=15

Ha=25

Ha=4

Ha=2

Ha=1



S.C. Shiralashetti et al.: Haar Wavelet Based Numerical Solution of Elasto-hydrodynamic Lubrication with Line Contact 

Problems 

 

JIC email for contribution: editor@jic.org.uk 

176 

Table 3. Maximum value of residual error norms versus different values of K  of Example 4.3. 

0.5   1   

K  1Ha   2Ha   4Ha   1Ha   2Ha   4Ha   

4 6.189E-4 1.493E-4 9.541E-5 2.978E-4 8.761E-5 5.445E-6 

16 4.189E-5 2.421E-7 6.733E-6 7.548E-7 3.276E-8 1.473E-7 

32 9.203E-7 3.115E-8 2.639E-8 2.198E-8 4.826E-10 6.014E-9 

64 1.087E-9 5.633E-11 6.878E-10 1.477E-10 1.104E-11 2.785E-12 

128 5.367E-10 5.031E-12 3.417E-13 4.113E-11 1.416E-12 2.587E-14 

Example 4.4 The EHL line contact problem models the lubricant flows between two cylinders rotating 

under an applied load. The physical problem is described by the coupling of Reynolds equation, for the flow 

of lubricant, and elastic deformation equation of cylinders. For a steady isothermal lubricant flow with smooth 

surfaces the dimensionless form of pressure P is described by Reynolds equation [17]. 

 ( ) 0, ( 4, 2)
d dP d

P H X
dX dX dX


 
     
 

                                     (30) 

where 


 3H
 , P(X) and H(X) are unknown pressure and film thickness,  a dimensionless speed parameter. 

H(X) satisfies the integral equation 

 
cX

X

dXXPXX
X

HXH

1

')'('log
1

2
)(

2

0


                                    (31) 

0H  is the central offset film thickness, 
2

2X
 defines the undeformed contact shape, third term pertains 

to elastic deformation of the contacting surfaces. 0H  is determined indirectly by the load balance equation, 

given in non-dimensional form, 

2
)(

1




cX

X

dXXP .                                                                 (32) 

The nondimensional forms of density )(P   and viscosity )(P  , which are functions of 

pressure, are given by the relations [17]. 

h

h

Ppe

Ppe
P






959.0

34.1959.0
)(                                                       (33) 

valid for both mineral and synthetic lubricants, and 
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P

0

0 11exp)(


                                              (34) 

(Roelands relation [18])respectively. z is the viscosity index (z = 0.6), 0p  ambient pressure ( 898.10  ep ), 

 the pressure viscosity relation ( 8165.2  e ), hp  is the maximum Hertizian pressure( 88.5  eph ). 

The physical non-dimensional parameters characterizing the EHL line contact problems are velocity (U), load 

(W) and elasticity (G) parameters. The corresponding boundary condition are  

0)()( 1  cXPXP  and 0
dX

dP
 at cXX                                         (35) 
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where cX  corresponds to cavitation point [19]. Since EHL problems are nonlinear the haar wavelet 

collocation method is appropriate. The HWCM based numerical solution of pressure (30) and film thickness 

(31) following steps as, 

Step-1: We begin with an initial guess for P, 0H  and the cavitation point cX . 

Step-2: Evaluate H (31) from the finite difference approximate we have 
2

0

1

1
( ) ( )

2

K
i

i ij j

j

x
H x H S P x

 

                                                        (36) 

where  

 log 1 log 1
2 2 2 2

ij i j i j i j i j

x x x x
S x x x x x x x x

         
                 
      

      (37) 

for 1, 2, . . . ,i K  and 1, 2, . . . ,j K , and 1

1

cX X
x

K


 


. 

Step-3: Evaluate density ( )  and viscosity ( ) . 

Step-4: To solve Reynolds equation (30) for P as explained in section 3 (case-3). 

Step-5: Update 0H  using the force balance equation (32). Move the cavitation point based upon the value 

of 
dX

dP
 at the cavitation point. 

Step-6: While not converged go to Step-2. 

We obtain the HWCM based numerical solution of the given Eqns. (30) and (31), results are presented in 

Figure 4 and residual error is given in Table 4. 

 

Figure 4. Comparison of HWCM and FDM solution for 64K   of Example 4.4. 

Table 4. Maximum value of residual error norms versus different values of K  Example 4.4. 

K  FDM HWCM 

16 4.036E-1 6.312E-3 

32 3.498E-1 1.971E-3 

64 2.340E-1 9.741E-4 

128 9.291E-2 7.115E-4 

256 5.132E-3 1.595E-4 

512 3.768E-3 8.582E-5 
 

5. Result and discussions  
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Here, we present numerical and graphical results obtained from HWCM applied to different types of 

nonlinear differential equations arising in fluid dynamics along with the study of electrohydrodynamic flow 

model and EHL with line contact model. The algorithm is implemented in MATLAB software. In order to 

assess the accuracy of the method in terms of infinity norm, root mean square error norm and residual norm 

verses number of grid level of the HWCM and are shown in Tables. In example 4.1 and example 4.2, we 

consider nonlinear problem and the haar wavelet solutions are presented in Figure 1 and Figure 2 respectively. 

The accuracy of the method increases considerably by increasing the level of grid points N. Numerical 

convergence of the algorithm in terms L  and rmsL  are presented in Table 1 and Table 2 respectively. In 

example 4.3, we taking singular with nonlinearity of electohydrodynamic flow problem. The numerical 

findings are presented in Figure 3 with different relevant parameters , Ha . The accuracy of the method in 

terms of residual and square residual errors are presented in Table 3 for different values of ,N   and 

Ha , which shows the convergence of the HWCM solution by increasing , Ha . Example 4.4, considered 

for the application of the HWCM, whose results are presented in Figure 4 and Table 4. 

6. Conclusion  

The HWCM is applied for the numerical solutions of a differential equations arising in fluid dynamics 

(nonlinear, electrohydrodynamic flow and elastohydrodynamic lubrication with line contact problem). It has 

been found that the HWCM provides a simple applicability and a fast convergence of the haar wavelets provide 

a solid foundation for using these functions in the context of numerical approximation justified through the 

numerical experiments. 
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