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Abstract. In this paper, we present the comparative study of Haar wavelet collocation method (HWCM) and 

Finite Element Method (FEM) for the numerical solution of parabolic type partial differential equations such 

as 1-D singularly perturbed convection-dominated diffusion equation and 2-D Transient heat conduction 

problems validated against exact solution. The distinguishing feature of HWCM is that it provides a fast 

converging series of easily computable components. Compared with FEM, this approach needs substantially 

shorter computational time, at the same time meeting accuracy requirements. It is found that higher accuracy 

can be attained by increasing the level of Haar wavelets. As Consequences, it avoids more computational costs, 

minimizes errors and speeds up the convergence, which has been justified in this paper through the error 

analysis. 

Keywords: Haar wavelet collocation method, parabolic equation, Finite difference method, Finite element 

method, Heat conduction problems. 

1. Introduction  

Differential equations have numerous applications in many fields such as physics, fluid dynamics and 

geophysics etc. Many reaction–diffusion problems in biology and chemistry are modeled by partial differential 

equations (PDEs). These problems have been extensively studied by many authors like Singh and Sharma [1], 

Giuseppe and Filippo [2] in their literature and their approximate solutions have been accurately computed 

povided the diffusion coefficients, reaction excitations, initial and boundary conditions are specified in a 

deterministic way. However, it is not always possible  to get the solution in closed form and thus, many 

numerical methods come into the picture.These are Finite Difference, Spectral, Finite Element and Finite 

Volume Methods  and so on to handle a variety of problems. Many researchers such as  Kadalbajoo and Awasti 

[3],F.De Monte[4] are involved in in developing various numerical schemes for finding solutions of heat 

conduction problems  appear in many areas of engineering and science. So, finding out fiexible techniques for 

generating the solutions of such PDEs is quite meaningful. Researchers Medvedskii and Sigunov [5] and Doss 

et.al [6] have used different techniques to compute the above problems and similar ones. Singularly perturbed 

problemsappear in many branches of engineering, such as fluid mechanics, heat transfer, and problems in 

structural mechanics posed over thin domains. Theorems that list conditions for the existence and uniqueness 

of results of such problems are throughly discussed by Ross et.al [7] and Gamel [8].  

The application of FEM to various heat conduction problems began through a paper by Zienkienicz and 

Cheung in 1965 [9]. Subsequently, Wilson and Nickel [10] have studied time dependent FE with variational 

principle in their work on transient heat conduction problems with Gurtin’s Variational principle 

[11].Zienkienicz and Parekh [12] derived isoparametric finite element formulations for 2-D transient heat 

conduction problems to approximate the solution in space and time.  Argyris et.al [13,14] analyzed structural 

problems by using real time-space finite elements. A parabolic time-space element, an unconditionally stable 

in the solution of heat conduction problems through a quasivariational approach was used by Tham and Cheung 

[15].  Wood and Lewis [16] compared the heat equations for different time-marching schemes. However, it is 

necessary to choose very small time-steps in order to overcome unwanted numerically induced oscillations in 

the solution. 

From the past few years, wavelets have become very popular in the field of numerical approximations. 

Among the different wavelet families mathematically most simple are the Haar wavelets. Due to the simplicity, 
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the Haar wavelets are very effective for solving ordinary and partial differential equations. In the previous 

years, many researchers like Bujurke and Shiralashetti et.al [17,18, and 19] and [67], Hariharan and Kannan[20] 

have worked with Haar wavelets and their applications. In order to take the advantages of the local property, 

Chen and Hsiao [21], Lepik [22,23] researched the Haar wavelet to solve the differential and integral equations. 

Haar wavelet collocation method (HWCM) with far less degrees of freedom and with smaller CPU time 

provides improved solutions than classical ones, see Islam et.al[24], In the present work, we use FEM and 

HWCM for solving typical heat conduction problems. 

The organization of the present chapter is in the following manner; Haar wavelets and operational matrix 

of integration in the generalized form are shown in section 2. In section 3 and 4, method of solution of FEM 

and HWCM are discussed respectively.  Section 5 deals with numerical findings with error analysis of the 

examples. Finally, the conclusion of the proposed work is described in section 6. 

2. Haar wavelets and operational matrix of integration 

The scaling function  1h x  for the family of the Haar wavelets is defined as 
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                                                            (2.1) 
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In the definition (2.2), the integer 2lm  , 0,1,..., ,l J  indicates the level of resolution of the wavelet 

and integer 0,1,..., 1k m   is the translation parameter. Maximum level of resolution is J . The index i  in 

(2.2) is calculated using 1i m k   . In case of minimal values 1, 0m k   then 2i  . The maximal value 

of i  is 12JN  .Let us define the collocation points
0.5

, 1,2,...,j

j
x j N

N


  , discretize the Haar function 

 ih x , in this way, we get Haar coefficient matrix  , ( )i jH i j h x  which has the dimension N N . For 

instance, 3 16J N   , then we have 

 

1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1

1     1     1     1     1     1     1     1    -1    -1    -1    -1    -1    -1    -1    -1

1     1    

H 16,16 

 1     1    -1    -1    -1    -1     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     1     1     1    -1    -1    -1    -1

1     1    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0

0     0     0     0     1     1    -1    -1     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     1    -1    -1     0     0     0     0

0     0     0     0     0     0     0     0     0     0     0     0     1     1    -1    -1

1    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0

0     0     1    -1     0     0     0     0     0     0     0     0     0     0     0     0

0     0     0     0     1    -1     0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     1    -1     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1    -1     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0     1    -1     0     0     0     0

0     0     0     0     0     0     0     0     0     0     0     0     1    -1     0     0

0     0     0     0     0     0     0     0     0     0     0     0     0     0     1    -1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The operational matrix of integration via Haar wavelets is obtained by integrating (2.2) is as, 
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i iPh h x dx                                                                 (2.3) 

and                                                                     
0

( )

x

i iQh Ph x dx                                                               (2.4) 

These integrals can be evaluated by using equation (2.2) and they are given by  
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                (2.6)  

For instance, 3 16J N   , from (2.5) then we have,  
 1     3     5     7     9    11    13    15    17    19    21    23    25    27    29    31

 1     3     5     7     9    11    13    15    15    13    11     9     7     5   
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  3     1

 1 
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and from (2.6) we get 
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 1     9    25    49    81   121   169   225   289   361   441   529   625   729   841   961

 1     9    25    49    81   121   169   225   287   343   391   431   463   48

1
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 0     0     0     0     1     9    23    31    32    32    32    32    32    32    32    32
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also    
0
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i iCh Ph x dx   and for instance 3 16J N   , then we have 
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  0       0       0       0       0       0      50     -31    1       1       1       1       1       1       1       1

  0       0       0       0       0       0       0       0     32    -17      1       1       1       1       1       1

  0       0       0       0       0       0       0       0      0       0      18      -7      1       1       1       1

  0       0       0       0       0       0       0       0      0       0       0       0       8      -1       1       1

  0       0       0       0       0       0       0       0      0       0       0       0       0       0       2       1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3. Finite Element Method for the Numerical Solution of Parabolic equations 

Case 1. FEM in one dimension: 

The equation can be written with the given conditions     

                                  0 1 ( , ) :0 1
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To formulate a FEM model of the governing differential equation, the domain  0,1   is divided into 

M (=2N) elements. A Typical element is shown by  ,a bx x   where  are the global cocordinates of 

the end nodes of the element. We begin with the weak formulation  by multiplying the given equation with the  

test function , we get   
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where is the initial time and  is the time interval and , the two linear elements are given by 

 , . 

The finite element solution which is continuous at space is obtained as 

 

In matrix form, we get  

                                                                                                      (3.5) 

where                                                                

                                              (3.6)                                                         

             ,                             (3.7)                                                            

The weak formulation is a variational statement of the given problem in which it is integrated against a 

test function, and hence after discretization, resulting matrices can be easily solved.  

Discretization:  
Rewriting the finite element model in the matrix form (4.5) in the form 

(By taking   )     

                                                  (3.8) 

where                                                                                         (3.9) 

The semidiscrete equations of a typical element for the choice of the linear interpolation functions are    

                                     (3.10) 

where is the length of the element.  

For different difference (i.e. forward, backward and Crank-Nicolson) schemes, general form of  -family 

of the approximation is given by   

     (3.11) 

Where is the time step and is the initial time, and  

                                                 (3.12)                       

                (3.13) 

Here we used Backward difference scheme to approximate the solution with  =1 and which is stable 

and order of accuracy is . 

For M = 2-Element model, the  family of time approximation schemes are put in the matrix form as 
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FEM consistency, accuracy and stability: 

The (3.11) represents an  -family of approximation, error is in the solution at each time step. If 

the error is bounded, the solution scheme is assumed to be stable. The numerical scheme is consistent, when 

the round off and truncation error tends to zero when  . The size of the time step will control both 

accuracy and stability. The numerical solution converges to the exact solution when the numbers of elements 

are increased and time step is decreased. The numerical scheme is convergent if it satisfies both stable 

and consistent conditions.  

Case 2. FEM in Two dimensions: 

The governing equation for transient heat conduction problems with a distributed source   may 

be given by  

                                          (3.15)                                                                                           

Subjected to                                                                                          (3.16)                                                                           

where   is the temperature function, is initial temperature field, the specified thermal 

conductivity, the density,  the specific heat, ,  is a bounded domain with a boundary  

1 2   with the following conditions   

        (On                                                                   (3.17)                                                                                                             

     (On )                                                            (3.18)                                                                                                      

    (On )                                                   (3.19)                                                                                               

Where  is boundary surface temperature, is the intensity of heat input,  the heat transfer 

coefficient, and known functions, is the outward normal vector of the boundary surface, and  

the environmental temperature. 

Time-domain discretization: 

Integrating the field equation (3.15) w r t  and using condition (3.16), we obtain  

                        (3.20)                                                             

The Integral equation cannot be considered analytically, so to approximate the temperature by 

given functions, divide the time domain  into equal intervals where is a given time. We 

can approximate as a linear function of time variables as  

                      (3.21)                                                     

Where  

Putting (3.21) into (3.20), we get 

            (3.22)            

Let then (3.22) becomes   

                        (3.23)                                                     
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                                 (3.24)                                                                   

Hence, the related boundary conditions become; 

On                                                  (3.25)                              

       (On )                                              (3.26)                         

(On )                                 (3.27)                       

Finite element formulation: 

The finite element formulation related to (3.23) to (3.27) is based on an extended variational principle. It 

can be stated as 

              (3.28)       

The Finite Element method is useful to obtain the numerical solution of (3.28). For this the domain  

is divided into a number of elements. For each element, the unknown function may be obtained by, 

                                                                                                       (3.29) 

Where the shape is function,  the nodal value of in the element, is the number of 

nodes in an element. For this job, a 4-node quadrilateral element is used and is a linear function of and

.Substituting (3.29) in (3.28), we get 

 

Where e is the element number, is the stiffness matrix and the equivalent nodal force vector, 

which gives to 

 

 

Where  

Here denotes the entire boundary of element . 

4. Haar wavelet collocation method for the numerical solution of parabolic 
equations  

Consider the parabolic equation of the form (3.1) with the given conditions,  

Let, 
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Integrating the equation (4.1) w. r. t.  from  to , we get 

                                                                                           (4.2) 

Where   is the   initial time and st t t     is the time interval 

Integrating the (4.2) twice w. r. t.  we get 

                                                             (4.3) 

                 (4.4)      

Put  in (4.4) and by given conditions we get 

 

Then (4.4) becomes 

                                                 (4.5) 

Differentiating (4.5) w. r. t.  then we have 

                                                    (4.6) 

Substituting the expressions of (4.2)-(4.6) in (1.1) and by solving, we get the Haar wavelet coefficients

’s using Inexact Newton’s method [21]. Putting the values of ’s in (4.5), to obtain the Haar wavelet 

collocation method (HWCM) based numerical solution of the problem (3.1).   

Convergence analysis of the Haar wavelets:  

Lemma: Assume that  with the bounded first derivative on (0, 1), then the error norm 

at  level satisfies the subsequent inequality  

 

From the above equation, it is clear that the error bound is inversely proportional to the level of resolution 

of the Haar wavelet. This promises the convergence of the Haar wavelet approximation when N is increased. 

5. Numerical Computations with Error Analysis  

This section deals with the implemention of the FEM and HWCM as described in section3 and 4 to find 

the numerical solution of some of the parabolic type problems. 

Test Problem 1. First consider the equation of the form 

                                                                                                (5.1) 

Subject to the conditions ,  and   

FEM Solution: 

Comparing the (5.1) with (3.1), we get , then from (3.2)  
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By putting and by assembling the matrix elements, using 

 00, 0,sin / 4,sin 2 / 4,sin 3 / 4,0if u     and omitting the first and last row and columns (due to the 

boundary conditions), we get, 

 

Hence the solutions are 2 3 40.1142, 0.1615, 0.1142u u u   . For higher values of N, FEM based 

numerical solutions are presented in the Table 1 & 2 and in the Fig.1. 

Table 1. Comparison of FEM, FDM and HWCM with Exact solutions for N=16 of the Test Problem 1. 

x=(/32) FEM FDM Exact HWCM 

1 0.060603 0.060640 0.052894 0.098017 

3 0.179482 0.179592 0.156649 0.290284 

5 0.291463 0.291641 0.254385 0.471396 

7 0.392243 0.392483 0.342344 0.634393 

9 0.477949 0.478242 0.417148 0.773010 

11 0.545289 0.545623 0.475921 0.881921 

13 0.591673 0.592035 0.516404 0.956940 

15 0.615319 0.615696 0.537042 0.995184 

17 0.615319 0.615696 0.537042 0.995184 

19 0.591673 0.592035 0.516404 0.956940 

21 0.545289 0.545623 0.475921 0.881921 

23 0.477949 0.478242 0.417148 0.773010 

25 0.392243 0.392483 0.342344 0.634393 

27 0.291463 0.291641 0.254385 0.471396 

29 0.179482 0.179592 0.156649 0.287827 

31 0.060603 0.060640 0.052894 0.097880 

Table 2. Error analysis of the Test Problem  1 with . 

N (FEM) (FDM) (HWCM) 

8 1.5268 E-01 1.5424 E-01 6.9516 E-01 

16 7.8276 E-02 7.8653 E-02 4.5814 E-01 

32 2.9602 E-02 2.9675 E-02 2.6507 E-01 

64 9.2931 E-03 9.3047 E-03 1.4286 E-01 

128 

256 

2.6210 E-03 

6.9733 E-04 

2.6226 E-03 

6.9755 E-04 

7.4202 E-02 

3.7818 E-02 

HWCM Solution: 
Assume that 

                                                                                                   (5.2)  

Integrating the equation (5.2) w. r. t.  from  to , we get 

                                                       (5.3) 

Where the initial is time and st t t    is the time interval 

Integrating the (3.16) twice w. r. t.  from  to , we get 
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Fig. 1. Comparison of HWCM, FEM & FDM with Exact solutions for N=32 of the Test Problem.1. 

  

                           (5.4)           

                   (5.5) 

Put  in (5.5) and by using given conditions we get 

 

Then (5.5) becomes 

                                                             (5.6) 

Differentiating (5.6) w. r. t.’t’ then we have 

                                                                                (5.7) 

Substituting the expressions of (5.3) & (5.7) in (5.1) we have  

                                                            (5.8) 

By solving (5.8) using Inexact Newton’s method [25], we get the Haar wavelet coefficients ’s = [38.74, 

2.36, -11.01, 13.74, -10.09, -2.15, 3.34, 10.44, -7.54, -3.28, -1.70, -0.46, 0.89, 2.50, 4.37 & 5.96]. Substituting 

the values of ’s in (5.6), to obtain the numerical solution of the problem (5.1) and is presented with Finite 

element method (FEM) and Finite difference method (FDM) solutions in comparison with the exact solution 

 in the Table 1 for N=16 and Fig.1 for N=32. The error analysis for superior values of 

N is shown Table 2 with .   
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Test Problem 4.5.2. Now consider the equation of the form 

                                                                                                                (5.9) 

with the given conditions ,  and   

Due to the initial condition, the FEM gives the trivial solution as discussed in section 3. 

The solution of (5.9) is obtained using the methods presented in section 4, Haar coefficients ’s = [4.37, 

-2.73, -0.62, -2.89, -0.37, -0.32, -0.73, -2.43, -0.25, -0.14, -0.14, -0.18, -0.28, -0.47, -0.87 & -1.61] and the 

corresponding HWCM solution is presented in comparison with the FDM and exact solution 

 in the Table 3 for N=16 and Fig.2 for N=32. The 

error analysis for higher values of N is given in Table 4 with . 

Table 3. Comparison of FDM and HWCM with Exact solutions for N=16 of the   Test     Problem .2. 

x=(/32) 
FDM Exact HWCM 

1 0.000287 0.000030 0.001572 

3 0.000880 0.000103 0.003521 

5 0.001529 0.000209 0.004845 

7 0.002273 0.000377 0.005953 

9 0.003160 0.000652 0.007009 

11 0.004246 0.001091 0.008110 

13 0.005598 0.001780 0.009336 

15 0.007301 0.002836 0.010766 

17 0.009462 0.004415 0.012500 

19 0.012217 0.006721 0.014671 

21 0.015738 0.010010 0.017466 

23 0.020247 0.014597 0.021155 

25 0.026026 0.020853 0.026126 

27 0.033439 0.029208 0.032918 

29 0.042949 0.040139 0.042226 

31 0.055155 0.054161 0.054799 

 

Table 4. Error analysis of the Test Problem .2 with . 

N (FDM) (HWCM) 

8 1.0262 E-02 1.5284 E-02 

16 5.7281 E-03 8.0851 E-03 

32 2.9021 E-03 3.6620 E-03 

64 1.4508 E-03 1.6279 E-03 
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Fig .2. Comparison of HWCM & FDM with Exact solutions for N=32 of the Test   Problem .2. 

 

Test Problem 3. Next consider the equation of the form (4.45), 

                                                                                   (5.10) 

With the given conditions ,  and   

FEM Solution: 

Comparing the (5.10) with (3.1), by putting and by assembling the matrix 

elements, using  00, 0,sin / 4,sin 2 / 4,sin 3 / 4,0if u     and omitting the first and last row and 

columns (due to the boundary conditions), we get  

 

 Hence the solution is 2 3 40.1749, 0.3087, 0.1749u u u      . For higher values of N, FEM based 

numerical solutions are presented in the Table 5 & 6 and in the Fig. 3. 

Table   5. Comparison of FEM, FDM and HWCM with Exact solutions for N=16 of the Test Problem .3. 

x=(/32) FEM FDM Exact HWCM 

1 0.071269 0.073550 0.571679 0.541342 

3 0.176576 0.178308 0.549709 0.488556 

5 0.232359 0.233667 0.506615 0.433947 

7 0.246604 0.247579 0.444052 0.370158 

9 0.226972 0.227677 0.364424 0.295712 

11 0.180988 0.181465 0.270791 0.211363 

13 0.116149 0.116426 0.166752 0.118996 

15 0.039977 0.040067 0.056305 0.021176 

17 -0.039977 -0.040067 -0.056305 -0.079110 

19 -0.116149 -0.116426 -0.166752 -0.178612 
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21 -0.180988 -0.181465 -0.270791 -0.273943 

23 -0.226972 -0.227677 -0.364424 -0.361671 

25 -0.246604 -0.247579 -0.444052 -0.438377 

27 -0.232359 -0.233667 -0.506615 -0.500724 

29 -0.176576 -0.178308 -0.549709 -0.545569 

31 -0.071269 -0.073550 -0.571679 -0.570244 

Table .6. Error analysis of the Test Problem .3 with . 

N (FEM) (FDM) (HWCM) 

8 2.5284 E-01 2.4834 E-01 1.6518 E-01 

16 5.0041 E-01 4.9812 E-01 7.3893 E-02 

32 6.9337 E-01 6.9220 E-01 2.6784 E-02 

64 8.1834 E-01 8.1774 E-01 8.4457 E-03 

128 

256 

8.9308 E-01 

9.3642 E-01 

8.9277 E-01 

9.3626 E-01 

2.4412 E-03 

6.6882 E-04 

 

Fig. 3. Comparison of HWCM, FEM & FDM with Exact solutions for N=32 of the Test  Problem .3. 

 

 

HWCM Solution: 

With the given conditions ,  and   

As in previous examples, the solution of  (4.45) is obtained with the Haar coefficients ’s = [-7.00, 32.61, 

16.55, 15.80, 9.69, 7.85, 8.51, 6.74, 6.17, 4.03, 3.84, 4.02, 4.22, 4.25, 3.85 & 2.80] and the consequent HWCM 

solution is computed and presented in comparison with the FEM, FDM and exact solution 
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 in the Table 5 for N=16 and Fig. 3 for N=32. The error analysis for higher values of 

N is shown in Table 6 with . 

 

Test Problem 4. Consider singularly perturbed convection-dominated diffusion equation 

                  and                                  (5.11) 

Where                                      

with the given conditions ,  and .  

As in previous Test Problems, the solution of (5.11) is obtained with the Haar coefficients ’s = [30.40, 

-58.06, -15.30, -89.37, -19.72, -2.38, -4.32, -144.76, -23.26, -3.17, -1.41, -1.07, -1.40, -3.25, -14.10 & -190.47] 

and the related HWCM solution is tabulated in comparison with the FDM and exact solution 

 in the Table 7 for N=16 and Fig. 4 for N=32 for .  The error analysis for 

higher values of N is given in Table 9 with   for different . 

Table 7. Comparison of FDM and HWCM with Exact solutions for N=16 of the Test  Problem .4 for

. 

x=(/32) FDM Exact HWCM 

1 1.491533 1.530853 1.606525 

3 1.420759 1.507377 1.601142 

5 1.375553 1.482726 1.576447 

7 1.344481 1.456841 1.545600 

9 1.320827 1.429662 1.510881 

11 1.300614 1.401122 1.472976 

13 1.281457 1.371154 1.432096 

15 1.261887 1.339686 1.388252 

17 1.240969 1.306644 1.341347 

19 1.218066 1.271949 1.291208 

21 1.192716 1.235517 1.237607 

23 1.164554 1.197262 1.180270 

25 1.133282 1.157093 1.118958 

27 1.098688 1.114914 1.053898 

29 1.060792 1.070624 0.988699 

31 1.020357 1.024118 0.954746 

Table 8. Comparison of FDM and HWCM with Exact solutions for N=16 of the Test  Problem .4   for

. 

x=(/32) FDM Exact HWCM 

1 1.052577 1.096989 1.097224 
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5 1.056104 1.084838 1.083784 
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13 1.048201 1.060217 1.054273 

15 1.044370 1.053994 1.046789 

17 1.040068 1.047745 1.039350 

19 1.035387 1.041468 1.032018 

21 1.030403 1.035164 1.024885 

23 1.025176 1.028833 1.018089 

25 1.019762 1.022474 1.011845 

27 1.014207 1.016088 1.006475 

29 1.008556 1.009673 1.002430 

31 1.002854 1.003231 1.000247 

 

Table 9.  Error analysis of the Test Problem .4 with  for different . 

N    

(FDM) (HWCM) (FDM) (HWCM) (FDM) (HWCM) 

8 2.5326 E-01 6.7537 E-02 5.3845 E-02 2.4813 E-02 8.3141 E-02 1.3687 E-02 

16 1.1236 E-01 9.3765 E-02 2.8811 E-02 2.1860 E-02 4.4412 E-02 1.0744 E-02 

32 3.9972 E-02 9.2128 E-02 1.5149 E-02 1.6327 E-02 2.3200 E-02 7.8394 E-03 

64 1.2472 E-02 7.4262 E-02 7.8622 E-03 1.0734 E-02 1.1960 E-02 5.1375 E-03 

128 

256 

3.5744 E-03 

9.7591 E-04 

4.9766 E-02 

2.9963 E-02 

4.0384 E-03 

2.0582 E-03 

6.4420 E-03 

3.6505 E-03 

6.1068 E-03 

3.0980 E-03 

3.1017 E-03 

1.7691 E-03 

The error analysis for higher values of N is given in Table 10 with  for higher values 

of . 

Test Problem 5. Now consider the two dimensional problem as,  

        , (in )                                  (5.12) 

where  , subject to the boundary and initial conditions as 

0(0, , ) ( ,0, ) ( , , ) ( , , ) ; ( , ) 30.u y t u x t u L y t u x L t o u x y                     .           (5.13)                                                

The analytical solution for the (5.12) is,  

 

where . 

Due to the symmetry, only one quadrant of the solution domain is formed by elements in the 

problem. Some results are shown in Tables 11and 12. Where Table 11 gives the distribution of temperature 

with analytical solution. Table 12 gives the variation of temperature at    , , 1.5,1.5,1.2x y t h  with N and 

Time step t , The Results of HWCM are based on Section 4. The distributions of temperature with analytical 

solutions for Test problem 5 are given in table 11.  
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Fig. 4. Comparison of HWCM & FDM with Exact solutions for N=32 of the Test Problem 4 for   

. 

 

Fig. 5. Comparison of HWCM & FDM with Exact solutions for N=32 of the Test  Problem 5.4  for . 
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Table .10. Error analysis of the Test Problem .4 with  for higher values of  . 

N 

   

(FDM) (HWCM) (FDM) (HWCM) (FDM) (HWCM) 

8 1.1485 E-01 1.0287 E-03 1.1696 E-01 9.6968 E-05 1.1716 E-01 9.6549 E-06 

16 5.9459 E-02 5.6655 E-04 6.0438 E-02 4.9812 E-05 6.0535 E-02 4.9083 E-06 

32 3.0264 E-02 3.3816 E-04 3.0709 E-02 2.5516 E-05 3.0756 E-02 2.4675 E-06 

64 1.5283 E-02 2.1845 E-04 1.5477 E-02 1.3297 E-05 1.5500 E-02 1.2397 E-06 

128 

256 

7.6896 E-03 

3.8610 E-03 

1.4389 E-04 

9.1665 E-05 

7.7697 E-03 

3.8929 E-03 

7.2161 E-06 

4.1935 E-06 

7.7806 E-03 

3.8979 E-03 

6.2520 E-07 

3.1786 E-07 

Table .11. The distribution of temperature with analytical solution for Test Problem .5. 

Methods x 0.3 0.6 0.9 1.2 1.5 

FEM 
 0.582 1.104 1.507 1.787 1.874 

 0.586 1.127 1.541 1.836 1.918 

HWCM 
 0.570 1.067 1.472 1.730 1.810 

 0.565 1.066 1.468 1.734 1.809 

Exact  0.561 1.064 1.467 1.726 1.814 

 

Test Problem 6. Consider the transient heat conduction problem 

                                                                                                  (5.14)  

Subject to the boundary conditions, for , 

  .                      (5.15)                                                   

and the initial conditions .  

Analytical solution is . 

 

We check for mesh of linear triangular elements to model the domain, and analyze the Stability 

and accuracy of the Crank-Nicolson method for 0.5 which is unconditionally stable. For the higher values of

, we take . 
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The boundary conditions of the problem are given by . 

Haar wavelet collocation method and Finite element based method numerical solutions are obtained for 

the different values of N of the Test Problem 6, Temperature against mesh and Time step .

 are shown in Table 12 Results are with Crank-Nicolson scheme and =0.005 are 

shown in Table 13. 

Table 12. The distribution of temperature with analytical solution for Test Problem  .6. 

Method N=5 N=10 N=15 

FEM 

 1.872 1..847 1.822 

 1.892 1.852 1.817 

 1.928 1.849 1.827 

 1.921 1.860 1.834 

HWCM 
 1.861 1.826 1.821 

 1.857 1.821 1.817 

 
 1.856 1.817 1.809 

 1.854 1.811 1.806 

EXACT  1.851 1.812 1.802 

Test Problem 7. Lastly, consider the 2-D Parabolic problem,  

                                                                                         (5.16)                                         

Subjected to the conditions,  

                   (5.17) 

With the analytical solution, 

 

Errors of the Test Problem 7 with  are given in Table 14. 
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Table 13. Results are with Crank-Nicolson scheme and =0.005 of the Test Problem .6. 

Node FEM HWCM EXACT 

1 0.3012 0.2909 0.2946 

2 0.2889 0.2757 0.2766 

3 0.2287 0.2256 0.2289 

4 0.1389 0.1339 0.1329 

5 0.0000 0.0000 0.0000 

7 0.2606 0.2632 0.2639 

8 0.2143 0.2170 0.2167 

9 0.1315 0.1324 0.1332 

10 0.0000 0.0000 0.0000 

13 0.1767 0.1800 0.1810 

14 0.1111 0.1119 0.1124 

15 0.0000 0.0000 0.0000 

19 0.0714 0.07190 0.0726 

20 0.0000 0.0000 0.0000 

25 0.0000 0.0000 0.0000 

 

Table 14   Errors of the Test Problem .7 with  . 

Method   

       

FEM O.63E-02 0.63E-02 0.63E-02 0.63E-03 0.58E-03 0.57E-03 

HWCM 0.44E-02 0.22E-01 0.46E-01 0.84E-04 0.32E-04 0.22E-04 

EXACT 0.47E-02 0.24E-01 0.46E-01 0.89E-04 0.35E-04 0.22E-04 

 

6. Conclusion  

In this paperr, we applied the Haar wavelet collocation method (HWCM) for the numerical solution of 

parabolic set of differential equations. It has been well demonstrated that while applying the nice properties of 

Haar wavelets, the parabolic type partial differential equations be able to be solved conveniently and accurately 

by using HWCM systematically. In the first Test Problem FEM & FDM gives better results than the HWCM. 

While in the second Test Problem, FDM results closer to HWCM where FEM gives the trivial solution due to 

the initial condition. Third Test Problem shows that the FEM & FDM gives the pitiable performance as 

compared to HWCM. In the fourth Test Problem due to the value of  the results are varied, as the value of 

 is less than 1, the FDM results are better than HWCM. The HWCM results closer to the FDM as the value 

of  is closer to 1. For the higher values of , the HWCM results are better than the FDM. The last four i.e. 

2-D Test Problem shows the robustness of the HWCM over FEM when compared with exact solution. The 

major advantages of the HWCM are its simplicity and small computation costs: it is due to the sparcity of the 

transform matrices and to the small quantity of significant wavelet coefficients. Hence the Haar wavelet 

collocation method is competitive in comparison with the classical methods. 
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