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Abstract. The main objective of this paper is to use the reduced differential transform method (RDTM) for 

finding the analytical approximate solutions for solving systems of nonlinear partial differential equations 

(NPDEs). The approximate solutions obtained by RDTM is verified by comparison with the exact solutions 

to show that the RDTM is quite accurate, reliable and can be applied for many other nonlinear partial 

differential equations. The method considers the use of the appropriate initial or boundary conditions and 

finds the solution without any discretization, transformation, or restrictive assumptions. This method is a 

simple and efficient method for solving the nonlinear partial differential equations. The numerical results 

show that this method is a powerful tool for solving systems of NPDEs. The analysis shows that our 

analytical approximate solutions converge very rapidly to the exact solutions. 

Keywords: reduced differential transforms method, nonlinear partial differential equations, analytic and 

approximate solutions. 

1. Introduction  

Nonlinear partial differential equations (NPDEs) are mathematical models that are used to describe 

complex phenomena arising in the world around us. The nonlinear equations appear in many applications of 

science and engineering such as fluid dynamics, plasma physics, hydrodynamics, solid state physics, optical 

fibers, acoustics and other disciplines [1]. On the other hand, there are many effective methods for obtaining 

the anaylatic approximate solutions and exact solutions of NPDEs samong of these methods are the inverse 

scattering method [2], Hirota’s bilinear method [3], Backlund transformation [4, 5], Painlevé expansion [6] 

sine-cosine method [7], homogenous balance method [8], homotopy perturbation method [9-12], variation 

method [13, 14], Adomian decomposition method [15, 16], perturbation method [17, 18], tanh-function 

method [19-21], Jacobi elliptic function expansion method [22-25], F-expansion method [26, 27], (G'/G)-

expansion method [28-32], exp-function method [33-35], complex transformation [36 ] and Riccati equations 

method [37, 38 ]. Recently Mabood [39] and Mohamed et al. [40-42]  used the optimal homotopy asymptotic 

to study the MHD slips flow over radiating sheet with heat transfer, the flow heat transfer viscoelastic fluid 

in an axisymetric channel with a porous wall and for the heat transfer in hollow sphere with the Robin 

boundary conditions. Also, Mabood et al. [43] have discussed the analytical solutions for radiation effects on 

heat transfer in Blasius flow. 

In the present article, we use the reduced differential to transform method (RDTM) which discussed in 

[44-47], to construct an appropriate solution of some highly nonlinear partial differential equations of 

mathematical physics. The reduced differential transforms technique is an iterative procedure for obtaining a 

Taylor series solution of differential equations. This method reduces the size of computational work and 

easily applicable to many nonlinear physical problems. In this paper, we discuss the analytic approximate 

solution for  two systems of nonlinear wave equations, these systems can be seen in [48, 49]. In 

mathematical physics, they play a major role in various fields, such as plasma physics, fluid mechanics, 

optical fibers, solid state physics, geochemistry and so on. 

       ,02  xxxxxt vuuvuu                                                                    (1) 

and 

                                                                     .0 xt uu                                                                     (2) 
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One of these systems is the generalized coupled Hirota Satsuma KdV system given by 
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x
uuuu xxxxt                                                       (3) 

,03  xxxxt u                                                                (4)          

  .03  xxxxt wuww                                                               (5) 

The paper has been organized as follows. Notations and basic definitions are given in Section 2. In 

Section 3, we apply the RDTM to solve two types of NPDEs. Conclusions are given in Section 4. 

 

2. Preliminaries and notations 
In this section, we give some basic definitions and properties of the reduced differential transform 

method which are further used in this paper. Consider a function of three variables ),,( tyxu  and suppose 

that it can be represented as a product of three single-variable functions, i.e., ).()()(),,( tgyhxftyxu    

Based on the properties the (2+1) of-dimensional differential transform, the function ),,( tyxu can be 

represented as follows: 
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where ),( yxUk  is called t-dimensional spectrum function of ),,( tyxu . The basic definitions of RDTM 

are introduced as follows [44-47]. 

Definition 2.1 If the function ),,( tyxu  is analytic and differentiated continuously with respect to time 

 t and space in the domain of interest, then let 

,)],,([
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where the t  dimensional spectrum function ),( yxUk  is the transformed function. In this paper the 

lowercase ),,( tyxu  represents the original function while the uppercase ),( yxUk  stands for the transform 

function. 

Definition 2.2 The differential inverse transform ),( yxUk is defined as follows:  
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Then, combining Eqs. (7) and (8) we have: 
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From the above definitions, it can be found that the concept of the RDTM is derived from the power 

series expansion. To illustrate the basic concepts of the RDTM, consider the following nonlinear partial 

differential equation written in an operator form: 

      ),,(),,(),,(),,( tyxgtyxuNtyxuRtyxuL                                    (10) 

with initial condition 

),()0,,( yxfyxu  ,                                                              (11) 

where 
t

L



 , R is a linear operator which has partial derivatives, N is a nonlinear operator and 

),,( tyxg is an inhomogeneous term. According to the RDTM, we can construct the following iteration 

formula: 

)],([)],([),(),,()1( 1 yxUNyxURyxGtyxUk kkkk                             (12) 

where ),( yxUk , )],([ yxUR k , )],([ yxUN k  and ),( yxGk  are the transformations of the functions 

),,( tyxu ,  )],,([ tyxuR , )],,([ tyxuN  and ),,( tyxg  respectively. From the initial condition (8), we write: 

).,(),(0 yxfyxU                                                                   (13) 

http://www.sciencedirect.com/science/article/pii/S1110016814000040#b0045
http://www.sciencedirect.com/science/article/pii/S1110016814000040#e0015
http://www.sciencedirect.com/science/article/pii/S1110016814000040#e0020
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Substituting Eq. (13) into Eq. (12) and by straightforward iterative calculation, we get the following 

),( yxUk values. Then, the inverse transformation of the set of ,...3,2,1),,( kyxUk is giving the n-terms  

approximation solution as follows: 

.),(),,(
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k
n

k
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                                                         (14) 

Therefore, the exact solution of the problem is given by: 

).,,(lim),,( tyxutyxu n
n 

                                                         (15) 

The fundamental mathematical operations performed by RDTM can be readily obtained and are listed 

in Table 1. 

 

Table 1. The fundamental operations of RDTM. 
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3. Numerical results 

To demonstrate the effectiveness of the reduced differential transform method (RDTM) algorithm this 

discussed in the above section. We use this method to construct the analytic approximate solutions for two 

systems of nonlinear wave equations which have a great attention by many researchers in physics and 

engineering. The results have been provided by software packages such as Mathematica 9. 

Example 3.1 We first consider a two components evolutionary system of a homogeneous KdV 

equatons of order 3 [48, 49] Eqs. (1) and (2) reads: 

       ,02  xxxxxt vuuvuu                                                          (16) 

.0 xt uu                                                           (17) 

http://www.sciencedirect.com/science/article/pii/S1110016814000040#t0005
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Subject to 
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Applying the reduced differential transform to the Eq. (12), we obtain the following iteration relation:   
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Using the initial conditions Eq. (18) and Eq. (19), we have: 
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Now, substituting Eqs. (18)-(19) into Eqs. (20)-(21), we obtain the following ),,(1 tyxVk  values 

successively as follows: 
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and so on. In the same manner, the rest of components can be obtained by using Mathematica software. 

Taking the inverse transformation of the set of values  n
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gives n-terms approximation solutions. 
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Therefore, the exact solution of the problem is readily obtained as follows: 
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To examine the accuracy of the RDTM solution, the absolute errors of the 7-terms approximate solution 

is listed in Table 2 and plotted in Fig. 1 and Fig. 2. 

 

Table 2. The exact solution obtained in Eq. (27) is compared 

 with the approximate solution obtained in Eq. (25). 

t x 5u  Exact solution Exactu 5  

0.5 

0.2 0.171478 0.171494 0.000025 

0.4 0.057637 0.057671 0.000034 

0.6 -0.057712 -0.057671 0.000041 

0.8 -0.171530 -0.171494 0.000037 

1 -0.280940 -0.280915 0.000025 

 

Table 3. The exact solution obtained in Eq. (28) is compared 

 with the approximate solution obtained in Eq. (26). 

t x 5v  Exact solution Exactv 5  

0.5 

0.2 -0.181273 -0.181372 0.0000989 

0.4 -0.168271 -0.168330 0.0000582 

0.6 -0.168326 -0.168330 0.0000038 

0.8 -0.181412 -0.181372 0.0000401 

1 -0.206183 -0.206123 0.0000602 

 
Figure 1: The exact solution (27) and (28) are compared with the approximate solution (25) and (26) at t =0.5 
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Figure 2: The absolute errors wth respect of ),(5 txu  and ),(5 txv  are shown respectively. 

From Figs. 1-3 and Tables 2, 3 the approximate solution is rapidly convergence to the exact solution. 

Example 3.2 Consider the generalzed coupled Hirote Satsuma KdV [48, 49]: 
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Applying the reduced differential transform to the Eq. (25), we obtain the following iteration relation:   
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We can assume the initial condition have the following form: 
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Now, substituting Eqs. (38)-(40) into Eqs. (35)-(37), we obtain the following ),,(1 tyxVk values 

successively as follows: 
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and so on. We calculate the 5Th iteration but write the five first terms for convence to the reader. In the same 

manner, the rest of components can be obtained by using Mathematica software. Taking the inverse 

transformation of the set of values  n
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Therefore, the exact solution of the problem is readily obtained as follows:  
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Figure 3: The exact solution (45) is compared with the approximate solution (42) for different value of 

.5.0 ,4.0 ,0.3 ,2.0 ,1.0t  
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Figure 4: The exact solution (46) is compared with the approximate solution (43) for different value of 

.5.0 ,4.0 ,0.3 ,2.0 ,1.0t  

 
Figure 5: The exact solution (47) is compared with the approximate solution (44) for different value of 

.5.0 ,4.0 ,0.3 ,2.0 ,1.0t  

4. Conclusions 

In this work, we present new applications of the reduced differential transform method (RDTM) by 

handling two nonlinear physical models, namely, generalized KP hierarchy equations. This method is an 

alternative approach to overcome the demerit of complex calculation of differential transform method 

(DTM). The proposed technique, which does not require linearization, discretization or perturbation, gives 

the solution in the form of a convergent power series with elegantly computed components. Therefore, the 

solution procedure of the RDTM is simpler than other traditional methods. The main advantage of the 

proposed method is that it requires less amount of computation. The results show that the RDTM is a 

powerful mathematical tool for handling NPDEs. The approximate solutions are rabidly convergence to the 

exact solutions. It can be observed that the solution approach of RDTM is much simpler than differential 

transform method (DTM) and it needs less computational effort than DTM. In other word, RDTM is an 

alternative approach to overcome the demerit of complex calculation of DTM, capable of reducing the size 

of calculation. As a special advantage of RDTM rather than DTM, the reduced differential transform 

recursive equations produce exactly all the Poisson series coefficients of solutions, whereas the differential 

transform recursive equations produce exactly all the Taylor series coefficients of solutions. We notice that 

the RDTM technique is highly accurate, rapidly converge and is very easily implementable mathematical 
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tool for the multidimensional physical problems emerging in various domains of engineering and allied 

sciences. 
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