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Abstract. This paper concerns the solution for singularly perturbed via cubic spline in tension. The derived
scheme leads to a tridiagonal system. The error analysis is proved and the method is shown to have a fourth
order convergence for the particular choice of the parameters. Computational efficiency of the method is
confirmed through numerical examples whose results are in good agreement with theory.
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1. Introduction

In this paper, we consider the following second-order singularly perturbed boundary value problem
gy"(x) = p(x)y'(x) +a(x)y(x) +r(x) (1)

yO)=a,y®) =4 2
where p(X),q(x),r(x) are smooth, bounded functions. It is well-known that the problem (1)-(2) exhibits

boundary layer at one or both ends of the interval depending on the properties of p(X) [1]. Singular
perturbation problems arise very frequently in fluid mechanics, quantum mechanics, optimal control,
chemical-reactor theory, aerodynamics, reaction-diffusion process, geophysics and many other areas in
applied science and engineering. Numerical treatment of the problem (1)-(2) has been widespread in recent
years, for instance [2, 4-14].

In [4], a tension spline method for the linear singularly perturbed problems was presented which has
second and fourth order convergence depending on the choice of the parameters A4, and A., involved in the
method. However, Khan and Aziz[4] claim of fourth order convergence for the problem with first derivative
term lacks theoretical and computational support because of two reasons. The replacement of first derivative
term with given approximations does not affect the error analysis and no numerical example is given to test
the competence of the method involving first derivative term. Khan and Aziz method[4] gives fourth order
convergence only for the problems with absence of first derivative term for some particular choice of

parameters A,and 4., concerned, but the order of convergence for the problems with first derivative term

subject to the boundary conditions

cannot exceed two, for any choice of parameters 4,and A.,. The proposed scheme is the modified form of

Khan and Aziz scheme in which a new parameter @ is introduced to obtain the desired fourth order
convergence for problems with first derivative term i.e., equation of the form (1) and (2). For the particular
value of @wi.e., =0, the proposed scheme reduces to Khan and Aziz[4] scheme. The derivation of the
scheme is developed in section 2. In section 3 error analysis is discussed and it shows convergence of order

1 1
four is achieved only for a particular value of parameter @, i.e., @ = ~ 20 along with A, = o and
£

5 . . .
A, = 3 Also, it is showed that for any other choice of parameters, the order of convergence is two.

2. A review of the research background
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We develop a smooth approximate solution of (1) using cubic spline in tension. For this purpose we
. 1

discretize the interval [0,1] divided into a set of grid pointsX; =ih, i =0,...,N with h= N A function

S(x,7) of Cz[a, b] which interpolates y(X) at the mesh point X; depends on a parameter 7, reduces to

cubic spline in [a,b] as 7 — 0 is termed as parametric cubic-spline function. The spline function
S(x,7) = S(X) satisfying in[X;, X;,,], the differential equation,

S =500 =[5"04) 7S 01 =) 4[5 01, ~ 255, @

where S(X,)=Y, and 7 >0 is termed as cubic spline in tension. Solving the equation (3) and

(X_Xi)
h

determining the arbitrary constants from the interpolatory conditions S(X;) =Y, and S(X;,;) = Vi.,. After
writing 1 = h/7 , we get

2 ¥ -

S(X) = h—[MHlS nhM+ |\/|i SmhM]

A%sinh h h
h2 (X B Xi) 12 (Xi+ B X) /12
b (Mi+1_h_2yi+1)+lT(Mi _h_QYi)] (4)
Differentiating equation (4) and using continuity conditions which lead to the tridiagonal system
h*(AM; +22,M, +/Wi+1) =Yia —2Yi + Yy 1=1ON -1 5)
1

= — — _ M — S" . ..

where 44 e SInh/l) Ay = (Z cothi-1), M, (X;) . The condition (3) ensures the

continuity of the first order derivatives of the spline S(X,7) at interior nodes. We write (1) in the form
eM, = p(x)y'(x)+a(x)y(x)+r(x) and substituting into equation (5), and using the following
approximations for first order derivatives of ¥ :

~ Y1 T4y —3Yi,y

"~ 6
V. o ©)
' = 3Yia —4Yi +V¥iu )
i+1 2h
' y|+1 yl—l ~
. +he(f -
y, 2h y| y ( i+l I )
1+2h w0, +ho3p;.,, + P,
yi = D 2ha)( Proa * Piot) Yir — 20(Piy + Pia)Yi
— — 2 . . .
" 1-2h wQ;_; + h(()(3 Pyt p|+1) Yo+ hCl)( - —l) (8)

2h
We get the following three term recurrence relation, which gives the approximation Y;, Y,,..., Yy_; Of

the solution Y(X) at the points X, X,,..., Xy 3
(-0 G, 0P (0 200, (P + 3P )+ 2 4hPL =)V,
(24hp, 4 —4h* 40P, (P1 + P 1) +20°2,0, —2h A p,,, +2¢)y,
(- 0Py G + AP L+ 2000, N3P+ P+ AP —2)Y.
= h?((& —2Lh@p)r , + 24,1 + (4 +24hop)r.),  i=L..N-1 (9)

Using (9) with (2), we get the approximate solution of Y(X) at the grid pointsX; .
Remark 1: For @ =0, the present scheme reduces to Khan and Aziz [4] method.
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1 1
Remark 2: For 4, = 5’ A, = 3 and @ =0, the present scheme reduces to the Kadalbajoo and Bawa’s

[6] second order method for uniform mesh.

3. General overview of tracking objects proposed method

From (6), (7) and (8) we get
, h? i
&1 =Y'(X4)-Yia= y (X )__ y" (x %)+ y '™y, Xig < 0 < X1 (10)

2

' ' h h iv i 1
€ =Y X)) Yin= y "(x; )+ y (%) + y (V/( )) Xy < l//() <X (11)

&=y(x)-y =-h’ (—+2w5)y () - h4(@ 3 COYED), %y <E¥<x, (12)

substituting eM, = p(x.)y (xi)+q(xi)y(xi)+r(xi) in (5), we obtain
(Yia =2+ Yia) =N (A(PaY,, + 0 aYia +50) +24(PY, + Y, +1)
+A4( pi+1y;+1 + i1 Yia t6ia)) (13)
using exact solution in (13), we have
(Y1) —2y(%) +y(X;.0)) = h? (AP Y (%) + i, Y(X,) +6y)
+22,(P Y '(X;) + 4 y(%) +1)
APy (%) + Y (6,1 +5.0)) +T(h) (14)

where

ch*

Th=">0C l+221)yw(77('))+ ( 1+3021)y'v(77('))

Xy < 77(i) <X (15)

1
For any choice of 4,and A, whose sum isE . Subtracting (13) and (14) and substitutinge, = y(X,) - V;,

we get
(e- hzﬂlqi—l)ei—l —2(e+ hzﬂszi)ei +(e— hz%qm)em

=h* (4P 484 + 24, P& + 4 Ppa€,) + T (h) (16)
Using (10)-(12), we get
(- hzﬂlqi—l)ei—l —2(e+ hzj”zqi)ei +(e- hzjﬂm)em

B [hTﬂl (Piy+ Pia) — 2h4ﬂz P; (l +20e)]y"(%) + M (Piy — pi—l)yiv(xi)

ji Py (€ + gy’ (™)) —2h° ﬂzp.(—+ )y (&) +T(h) @7)

120
Let
h? (i)
p|+1 p| + hp| +_ p| (}( ) (18)
h (0)
p|—1 p| hp| +—— p| (7 ) (19)
where x_, < 7" <., %, <y® <x.,.Using (18),(19) and (15) in (16), we get
(¢-h? A0 4)e, —2(e+ hzﬂ“zqi)ei +(e- h2/11CIi+1)ei+1 =T, (h) (20)
where
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4

T, = h“(%—zzz (%+ 206)) Py () +%(1—1zzl)y”(u“>) +o(h?) (21)

1
It can be seen easily that T, (h) = O(h*) for any choice of A4 +4, =§ and for any value of @and

T.()=0(h®) for A =— . A== and w=—-—— . Let J=trid[z 2 &] and
12 12 20¢

D=trid[4, 24, A] are N —1xN —1 tridiagonal matrices and Q =[q,,d,,...,qy_,]' and

E :[el,ez,...,eNfl]T are N —1 component vectors. So, equation (20) can be written in matrix vector

formas AE =T, where

A=J—-h’DQ (22)
Following[3], it can be shown that, for sufficiently small h
IEl=|A™T, | = IEl < [A™|T,| (23)
Therefore, |[Ell=0O(h?) for any choice of A4 +4, :% and [|E[l=O(h*) for A, = % , Ay = %
and w = —% . Thus we summarize the following.
&

Theorem: Let y(x) € C*[a,b], then our method provides a second order convergent approximation for
1
solution Y(X) of the boundary value problem (1)-(2) for arbitrary choice of @ with A + 4, =§and a

: 1 5 1
fourth order convergent solution for 4, = —, A, =—and o = ——— .

12 12 20¢
4. An educational process
In this section, we present the numerical simulation to demonstrate the applicability of the scheme by
considering two examples. Maximum absolute errors (i.e., max|y(xi)— Vi |) at nodal points are computed

for different values of € and N .
Example 1: Consider the following homogeneous singular perturbation problem

—ey" () +y' () +A+e)y(x)=0 (24)
Subject to the boundary conditions
—(1+¢)
y(0)=1+e ¢ ,yl)=1+> (25)
e
The exact solution is given by
(A+e)(x-1)
y(x)=e ¢ +e (26)

In Table 1, we have compared the maximum absolute errors for different values of A,,4, obtained by
the present method and the fitted finite difference method [13]. The Maximum absolute errors and order of
convergence obtained by the proposed method for different values of N, A4, and A, are presented in Table 2.

The estimated Maximum absolute errors and € - uniform errors E " using the proposed method shown in

Table 3.
Example 2: Consider the following homogeneous singular perturbation problem

—ey"(X) + @+ X)?y'(X) + 20+ X) y(X) = %ez [+ X)(3—X) + %] (27)
Subject to the boundary conditions

7

y(0)=0,y(l)=e 2 —e % (28)
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The exact solution is given by
X _x(x*+3x+3
y=e?-e =
We have compared the maximum errors and the order of convergence obtained by the present method
and the Khan and Aziz method [4] in Table 4-5.

(29)

Table 1: Comparison of maximum absolute errors for N = 128

& Present Method Present Method Method in [13]
1 1 1 5
= — , ﬂ, = — = —, = —
Mgty et
1 4.0233¢ — 05 1.1740e — 08 4.6749¢ — 02
8
1 1.2692¢ — 04 1.5615¢ — 07 2.3131e — 02
16
1 4.4468¢ — 04 2.2548¢ — 06 1.1498e — 02
32
1 1.6589¢ — 03 3.4455¢ — 05 5.6808e — 03
64
1 6.4347¢ — 03 5.5905¢ — 04 2.7248¢ — 03
128

Table 2: Maximum absolute errors and order of convergence for Example 1 using present method

£ N=64 | Order | N=128 | Order | N=256 Order
273 1.6101e — 04 2.00 4.0233e — 05 2.00 1.0062e — 05 2.00
24 5.0826e — 04 2.00 1.2692e — 04 2.00 3.1773e — 05 2.00
25 1.7842e — 03 2.00 4.4468e — 04 2.00 1.1108e — 04 2.00
26 6.6949e — 03 2.01 1.6589e — 03 2.00 4.1375e — 04 2.00
27 1.8415e — 02 151 6.4347e — 03 2.00 1.5971e — 03 2.00

1 5

Ay = T A= o
273 1.8801e — 07 4.00 1.1742e — 08 3.98 7.3401e — 10 3.98
24 2.5062e — 06 4.00 1.5615e — 07 3.99 9.7705e — 09 3.99
25 3.6505e — 05 4.02 2.2548e — 06 4.00 1.4051e — 07 4.00
26 5.7654e — 04 4.06 3.4455e — 05 4.00 2.1289% — 06 4.00
2-7 7.7223e — 03 3.78 5.5905e — 04 4.02 3.3432e — 05 4.02
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Table 3: Maximum absolute errors and € - uniform errors E" for Example 1 using present method

& N=64 | Order | N=128 | Order | N=256 Order
1 1
ﬂ,, = —, = —
155
273 1.6101e — 04 2.00 4.0233e — 05 2.00 1.0062e — 05 2.00
24 5.0826e — 04 2.00 1.2692e — 04 2.00 3.1773e — 05 2.00
25 1.7842e — 03 2.00 4.4468e — 04 2.00 1.1108e — 04 2.00
26 6.6949% — 03 2.01 1.6589 — 03 2.00 4.1375e — 04 2.00
277 1.8415e — 02 151 6.4347e — 03 2.00 1.5971e — 03 2.00
1 5
e
273 1.8801e — 07 4.00 1.1742e — 08 3.98 7.3401e — 10 3.98
24 2.5062e — 06 4.00 1.5615e — 07 3.99 9.7705e — 09 3.99
25 3.6505e — 05 4.02 2.2548e — 06 4.00 1.4051e — 07 4.00
26 5.7654e — 04 4.06 3.4455e — 05 4.00 2.1289% — 06 4.00
2-7 7.7223e — 03 3.78 5.5905e — 04 4.02 3.3432e — 05 4.02
Table 4: Maximum absolute errors and order of convergence for Example 2
& N=256 N=512
Method in [4] | Present Method Method in[4] | Present Method
1 1
h=5h=3
23 1.6662e — 05 1.5943e — 05 4.1658e — 06 3.9854e — 06
1.99 2.00 2.00 2.00
24 9.0909e — 05 1.9052e — 05 2.2724e — 05 4.7598e — 06
2.00 2.00 2.00 2.00
25 4.2036e — 04 1.2099% — 05 1.0502e — 04 3.0471e — 06
2.00 1.98 2.00 1.99
2-6 1.8088e — 03 2.1377e — 04 4.4995e — 04 5.3615e — 05
2.01 1.99 2.00 1.99
277 7.6309e — 03 1.1907e — 03 1.8688e — 03 2.9880e — 04
2.03 1.99 2.01 1.99
1 5
Eah =
12 12
23 | 3.9344e - 05 1.0075e — 09 9.8351e — 06 6.479% — 11
2.00 3.96 2.00 3.59
24 1.3675e — 04 1.0547e — 08 3.4176e — 05 6.5967e — 10
2.00 3.99 2.00 3.91
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25 | 5.1161e — 04 1.4293e — 07 1.2773e — 04 8.9272e — 09
2.00 4.00 1.99 3.99
26 1.9915e - 03 2.1348e — 06 4.9527e — 04 1.3304e — 07
2.00 4.00 2.00 3.99
27 | 8.0071e — 03 3.3452e — 05 1.9598e — 03 2.0674e — 06
2.03 4.01 2.01 4.00

Table 5: Maximum absolute errors for second order method with € = 2 for Example 2

Ay N=256 N=512 N=1024
14 7.7257e - 02 1.5449¢ - 02 2.6922e - 03
189
13 6.7011e - 02 1.0966e - 02 1.4663¢ - 03
14°7
1 11 8.6035¢ — 02 1.9333e - 02 3.7610e - 03

2424
1 14 9.1221e - 02 2.1646e — 02 4.4005e - 03

3030

5. Results of the positive and negative features patterns

We have presented numerical simulations for singularly perturbed boundary value problems using cubic
spline in tension. It is observed from the tables that the present method is more efficient than the methods
given in [4], [13]. The computational results shows that the present method is fourth order only for a

1 1
particular choice of the newly introduced parameter @ , i.e., wz—H along with A, :E and
&

5 - . .
A, = 7 Also it is shown that for any other choice of the parameters, the order of convergence is two.
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