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Abstract. This paper presents a method for control discrete-time system with time-delay. The main idea is 

a convert the discrete-time delay linear controllable system into the linear systems without delay. Then by 

using similarity transformations a state feedback matrix was obtained, so that time-delay has no effect on the 

system. The proposed technique is illustrated by means of numerical examples. 
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1. Introduction  

The problem of investigation of time delay systems has been exploited over many years. Time-delay is 

very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, 

chemical processes, long transmission lines, etc. The existence of pure time-delay, regardless if it is present 

in the control or/and the state, may cause undesirable system transient response, or even instability. 

During the last four decades, the problem of stability analysis of time delay systems has received 

considerable attention and many papers dealing with this problem have appeared [1]. In the literature, 

various stability analysis techniques have been utilized to derive stability criteria for asymptotic stability of 

the time delay systems by many researchers [2]-[6]. The developed stability criteria are classified often into 

two categories according to their dependence on the size of the delay: delay-dependent and delay-

independent stability criteria [7]. It has been shown that delay dependent stability conditions that take into 

account the size of delays, are generally less conservative than delay-independent ones which do not include 

any information on the size of delays. 

Further, the delay-dependent stability conditions can be classified into two classes: frequency-domain 

(which are suitable for systems with a small number of heterogeneous delays) and time-domain approaches 

(for systems with a many heterogeneous delays). 

In the first approach, we can include the two or several variable polynomials [8],[9] or the small gain 

theorem based approach [10]. 

In the second approach, we have the comparison principle based techniques [11] for functional 

differential equations [12]-[14] and respectively the Lyapunov stability approach with the Krasovskii and 

Razumikhin based methods [1],[15] The stability problem is thus reduced to one of finding solutions to 

Lyapunov [5] or Riccati equations [12], solving linear matrix inequalities (LMIs) [16],[17] or analyzing 

eigenvalue distribution of appropriate finite-dimensional matrices [18] or matrix pencils [10] . For further 

remarks on the methods see also the guided tours proposed by [13], [19]-[22].  

In this paper we used of results [23],[24] for discrete-time delay systems. This is mainly due to the fact 

that such systems can be transformed into augmented high dimensional systems (equivalent systems) without 

delay. 

The remainder of this paper is organized as follows. In Section 2, the problem statement and some 

necessary preliminaries are given. In Section 3, we proposed method for stability this systems. Numerical 

simulations are provided in Section 4. Finally, some concluding remarks are given in Section 5. 

2. Problem statement 

Consider a controllable linear time-invariant system with time-delay defined by the state equation  
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where nRx  is the state vector, mRu  is the control input  and the matrices iA  and iB  are real 

constant matrices of dimensions nn  and mn , respectively, with mBrank i )( . 

By definition state vector such as 
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The system (1) with p delays in state and   q  delays in input vector can be rewritten as a standard 

system 
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and 
nRX
~

1  , mRu , mqpnn  )1(~
. 

We define control law as  

),()( 1 kFXku                                                                           (5) 

Where F is a feedback gain. Therefore, the system (1) changes to a standard closed-loop system  

).()()1( 11 kXBFAkX                                                               (6) 

In this paper we determined the state feedback matrix  F such that the eigenvalues of the closed-loop 

system BFA lie in the self-conjugate eigenvalue spectrum },,{ ~21 n  . 

Karbassi and Bell [25]-[26] have introduced an algorithm obtaining an explicit parametric controller 

matrix  F by performing three successive transformations  T,S and R which transforms the controllable pair  

(A,B) into standard echelon form, primary vector companion form and parametric vector companion form, 

respectively. Let  F represent the primary feedback matrix which assigns the desired set of eigenvalues to the 

closed-loop system. 

3. Main results 

Consider the state transformation 
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~
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where T can be obtained by elementary similarity operations as described in [26]. By replace (7) in equation  

(3) we have  
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In this way, ATTA 1~  and  BTB 1~   are in a compact canonical form known as vector companion 

form: 
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Here 0G is a nm ~ matrix and 0B is an mm upper triangular matrix. Note that if the 

Kroneckerinvariants of the pair  BA,  are regular, then A
~ and B

~ are always in the above form [25]. In the 

case of irregular Kronecker invariants, some rows of mnI ~  in A
~  are displaced [26]. It may also be concluded 

that if the vector companion form of A
~ obtained from similarity operations has the above structure, then the 

Kronecker invariants associated with the pair  BA,  are regular [26].  

The transformed closed-loop matrix pFBA
~~~~

  assumes a compact Jordan form with zero 

eigenvalues  
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It is from this form that the state feedback matrix, which assigns a set of arbitrary eigenvalues to the 

system and also the location of parameters, can be obtained. The controller matrix pF
~

 is then modified by 

adding a diagonal matrix  ndiagD ~21 ,...,,    for an arbitrary set of self-conjugate eigenvalues to 
~ as 

defined in [8]. Then the closed-loop system matrix pFBA
~~~

  becomes  
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Simple elementary similarity operations can be used to obtain the matrix 
A
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where G  is the first nm ~  sub-matrix of A
~

. Obviously, A
~

 possesses the desired set of eigenvalues 

and is in the same canonical form as A
~ .  

Thus, the primary feedback matrix which gives rise to the assignment of eigenvalues becomes  

)(
~~
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Clearly, disturbance is rejected and the eigenvalues of the closed-loop system FBA
~~~~

  are in the 

spectrum  , then eigenvalues of the closed-loop BFA  are in the spectrum  , where 1~  TFF . 

4. Numerical Examples 

In this section, we give three examples to show the success of the proposed method. 

Example 1.  Consider a discrete-time linear system with delay in state vector 
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The system (14) is practically unstable (eigenvalue ofA is   

{3.198,2.194,1.136, 1.76 0.88i, 1.76 0.88i, 1}       , then , system open-loop is unstable). stabilization of 

this system is our next aim, we find feedback matrix $ F$ which the eigenvalues of the closed-loop system 

assign in spectrum { 0.1, 0.3,0,0.1,0.3,0.5}    . Since, we obtain 

 1.3333    1.0000   -1.0000    3.5467   -3.9100    1.7267

-2.4900    1.5000   -0.0050   -1.0050   -0.7500   -1.4975
F

 
  


                              (16) 

With norm 6.8477. Also, The system response to a unit step input is shown in Fig . 1. As you can see in 

Fig . 2, system of this example from initial value (0) [ 1,5,3,1, 0.5, 3]TX      is practically stable. 

 
Fig. 1: State response in example1 

 
Fig. 1: Input response in example1 

Example 2.  Consider a discrete-time linear system with delay in state vector [27] 
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We find feedback matrix  F which the eigenvalues of the closed-loop system assign in spectrum 

{ 0.1,0.1, 0.5,0.5}    . therefore, we obtain 

 -0.0049    1.1688   -1.4814   -0.1104

 -0.0005   -0.0017    0.0023   -0.5480
F
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As you can see in Fig. 3, system of this example from initial value x(0) =[-1,1,5,-3 ]T
 is practiclly stable. 

Fig. 4 shown Control input. 
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Fig. 3: State response in example2 

 
Fig. 4: Input response in example2 

Example 3.  Consider a discrete-time linear system with delay in state  and input vector 
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We find feedback matrix F which the eigenvalues of the closed-loop system assign in spectrum 
{ 0.1, 0.2, 0.3, 0.4,0.1,0.2,0.3,0.4}      . therefore, we obtain 
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this system unstable. For stability system, state feedback matrix which locates all the eigenvalues of the 

closed-loop system is found to be: 

3.1645 3.4568 4.6940 3.4696 0.0169 4.8777 2.9585 2.7040
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Also, The system response to a unit step input is shown in Fig . 5. As you can see in Fig . 6, system of 

this example from initial value x(0) =[-2,2,-1,1,3,-3,4,-4 ]T
is practically stable 
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Fig. 5: State response in example3 

 
Fig. 6: Input response in example3 

5. Conclusion 

The control problem for linear discrete systems with time-delay is investigated in this paper. 

We used of augmented vector that system with time-delay convert to system without delay. Then by 

using similarity transformations, computed optimal controller. Also, the stability analysis of time-

discrete systems with time varying delay and fractional-order system appear to be an interesting 

problem and open for future investigation. 
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