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Abstract. Due to the extensive existence of time delay for natural population, it is necessary to take the 

effect of time delay into account in forming a biologically meaningful mathematical model. In view of this, a 

delayed predator-prey system with Holling type-IV functional response and impulsive dispersal between two 

patches is formulated. By using comparison theorem of impulsive differential equation and some analysis 

techniques, we obtain a predator-extinction periodic solution, which is globally attractive. Furthermore, it is 

proved that the investigated system is permanent. Numerical simulations are carried out to illustrate the 

theoretical results. 
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1. Introduction  

Dispersal is a ubiquitous phenomenon in natural world. Its importance in understanding the ecological 

and evolutionary dynamics of populations was mirrored by a large number of mathematical models devoted 

to it in the scientific literature. The persistence and extinction for ordinary differential equation and delayed 

differential equation models were investigated[1-3]. Global stability of equilibrium and periodic solution for 

diffusing models were studied[4-6]. 

However, in all of above population dispersing systems, it is always assumed that the dispersal occurs at 

every time. For example, in [3], Huang proposed the following periodic predator-prey system with Holling-

IV functional response: 

{
 
 

 
 𝑥̇1 = 𝑥1 [𝑏1(𝑡) − 𝑎1(𝑡)𝑥1 −

𝑐1(𝑡)𝑦

𝑒(𝑡)+𝛽(𝑡)𝑥1+𝑥1
2] + 𝐷(𝑡)(𝑥2 − 𝑥1).

𝑥̇2 = 𝑥2[𝑏2(𝑡) − 𝑎2(𝑡)𝑥2] + 𝐷(𝑡)(𝑥1 − 𝑥2).

𝑦̇ = 𝑦 [−𝑑(𝑡) +
𝑐2(𝑡)𝑥1

𝑒(𝑡)+𝛽(𝑡)𝑥1+𝑥1
2 − 𝑞(𝑡)𝑦] .

                           (1.1) 

The function 
𝑐(𝑡)𝑥1(𝑡)

𝑒(𝑡)+𝛽(𝑡)𝑥1(𝑡)+𝑥1
2(𝑡)

 represents the functional response of predator to the prey in patch 1. Let 

𝜓(𝑡, 𝑥1(𝑡)) =
𝑐(𝑡)𝑥1(𝑡)

𝑒(𝑡)+𝛽(𝑡)𝑥1(𝑡)+𝑥1
2(𝑡)

, then we have 

 
𝜕

𝜕𝑥1
𝜓(𝑡, 𝑥1(𝑡)) ≥ 0, 0 < 𝑥1(𝑡) ≤ √𝑒(𝑡), 

𝜕

𝜕𝑥1
𝜓(𝑡, 𝑥1(𝑡)) < 0, 𝑥1(𝑡) > √𝑒(𝑡). 

In practice, it is often the case that diffusion occurs at certain moment. For example, when winter comes, 

birds will migrate between patches in search for a better environment, whereas they do not diffuse in other 

seasons, and the excursion of foliage seeds occurs at certain moment every year. Therefore, it is not 

reasonable to characterize the population movements in these cases with continuous dispersal models. This 

short-time scale dispersal is more appropriately assumed to be in the form of impulses in the modeling 

process. With the developments and applications of impulsive differential equations, theories of impulsive 

differential equations have been introduced into population dynamics, and many important studies have been 

performed [7-11]. Hui [8] proposed the following single model with impulsive diffusion: 
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{
 
 

 
 
𝑥1
′(𝑡) = 𝑥1(𝑡)(𝑎1 − 𝑏1𝑥1(𝑡)),

𝑥2
′ (𝑡) = 𝑥2(𝑡)(𝑎2 − 𝑏2𝑥2(𝑡)),

Δ𝑥1(𝑡) = 𝑑1(𝑥2(𝑡) − 𝑥1(𝑡)),

Δ𝑥2(𝑡) = −𝑑2(𝑥2(𝑡) − 𝑥1(𝑡)),

𝑡 ≠ 𝑛𝜏,

𝑡 = 𝑛𝜏,
                                              (1.2) 

where 𝑎𝑖, 𝑏𝑖 (i = 1, 2) are the intrinsic growth and density-dependent parameters of the population in the i th 

patch, 𝑑𝑖  is the net dispersal rate between the i th patch and j th patch (i ≠  j, i, j = 1, 2). Δ𝑥𝑖(𝑡) 
=𝑥𝑖(𝑛𝜏

+)−𝑥𝑖(𝑛𝜏), where 𝑥𝑖(𝑛𝜏
+) represents the density of the population in the i th patch immediately after 

the n th diffusion pulse at time t = nτ, 𝑥𝑖(𝑛𝜏) represents the density of the population in the ith patch before 

the nth diffusion pulse at time t = nτ,( n = 1, 2,⋯, i = 1, 2). 

It is well known that the time delay is quite common for natural population. In order to reflect the 

dynamical behaviors of models that depend on the past history of system, it is necessary to take time delay 

into account in forming a biologically mathematical model. Delay differential equations have attracted a 

significant interest in recent years due to their frequent appearance in a wide range of applications, which 

serve as mathematical models describing various phenomena in physics, biology, physiology, and 

engineering, see [12-16] and references therein, their research topics include global asymptotic stability of 

the equilibria, existence of periodic solutions, complicated behaviors and chaos. 

Motivated by above analysis, in this paper, we will consider a delayed predator-prey system with 

Holling type-IV functional response and impulsive diffusion between two patches: 

{
 
 
 
 

 
 
 
 𝑥1

′(𝑡) = 𝑥1(𝑡)[𝑎1 − 𝑏1𝑥1(𝑡) −
𝑐1𝑦(𝑡)

𝑒+𝑥1(𝑡)+𝑥1
2(𝑡)
],

𝑥2
′ (𝑡) = 𝑥2(𝑡)(𝑎2 − 𝑏2𝑥2(𝑡)),

𝑦′ (𝑡) = 𝑦(𝑡)[−𝑑 +
𝑐1𝑥1(𝑡−𝜏1)

𝑒+𝑥1(𝑡−𝜏1)+𝑥1
2(𝑡−𝜏1)

− 𝑞𝑦(𝑡 − 𝜏2)]

Δ𝑥1(𝑡) = 𝑑1(𝑥2(𝑡) − 𝑥1(𝑡)),

Δ𝑥2(𝑡) = −𝑑2(𝑥2(𝑡) − 𝑥1(𝑡)),

Δ𝑦(𝑡) = 0,

,

𝑡 ≠ 𝑛𝜏,

𝑡 = 𝑛𝜏,

                          (1.3) 

with initial conditions 

𝑥1(𝑠) = 𝜙1(𝑠), 𝑥2(𝑠) = 𝜙2(𝑠), 𝑦(𝑠) = 𝜙3(𝑠), 
𝜙 = (𝜙1, 𝜙2, 𝜙3)

𝑇 ∈ 𝐶([−𝜏̃, 0], 𝑅+
3), 𝜙𝑖(0) > 0, 𝑖 = 1,2,3. 

In this case, we suppose that the system is composed of two patches connected by diffusion and 

occupied by a single species. 𝑥𝑖 (i = 1, 2) denotes the density of prey species in the ith patch, respectively, 

and y is the density of predator species. 𝑎𝑖  and 𝑏𝑖 denote the intrinsic growth rate and the density dependence 

rate of prey species in patch i(i = 1, 2), d is the death rate of the predator, and q represents the density 

dependence rate of predator species in patch 1, 𝑐1 is the capturing rate of the predator, 𝑐2/𝑐1 is the conversion 

rate of the nutrient into the production rate of the predator. 𝜏̃ = max{τ1, τ2}, τ1 ≥ 0 is a constant delay due to 

the gestation of the predator. In addition, we have included the term −𝑞𝑦(𝑡 − 𝜏2) in the dynamics of predator 

y to incorporate the negative feedback of predator crowding. 𝑑𝑖 is the net dispersal rate between the ith patch 

and jth patch (i≠j, i, j = 1, 2), 0 < 𝑑𝑖< 1 for i = 1, 2. 

Other part of this paper is organized as follows. Some important Lemmas are presented in section. In section 

3, the global attractively of the predator-extinction periodic solution and permanence of system (1.3) are 

investigated. In section 4, some numerical simulations are presented to illustrate the feasibility of our results. 

In the last section, we give a brief discussion of our results. 

2. Preliminaries 

In this section, we will give some definitions and lemmas.  

Let 𝑅+ = [0,+∞), 𝑅+
3 = {𝑥 ∈ 𝑅3, 𝑥 ≥ 0}, the map 𝑓 = (𝑓1, 𝑓2, 𝑓3)

𝑇 is defined by the right-hand sides of the 

first three equations of system (1.3), suppose 𝑉: 𝑅+ × 𝑅+
3 → 𝑅+, then V is said to belong to 𝑉0 if  

(1) V is continuous in [n 𝜏 ,(n +1)  𝜏 ]  × 𝑅+
3 , and, for each x ∈ 𝑅+

3 , n ∈ N ,  lim
(𝑡,𝑦)→(𝑛𝜏+,𝑥)

𝑉(𝑡, 𝑦) 

=𝑉(𝑛𝜏+, 𝑥) exists. 

(2) V is locally Lipschitzian in x. 

Definition 2.1. Let V∈ 𝑉0, then for (t, x)∈[n𝜏, (n + 1) 𝜏] × 𝑅+
3 , the upper right derivative of V (t, x) with 

respect to the impulsive differential equation (1.3) is defined as 
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D+𝑉(𝑡, 𝑥) = lim
ℎ→0+

𝑠𝑢𝑝
1

ℎ
(𝑉(𝑡 + ℎ, 𝑥 + ℎ𝑓(𝑡, 𝑥)) − 𝑉(𝑡, 𝑥)) . 

Definition 2.2. System (1.3) is said to be permanent if there exist positive constants m and M, such that 

each positive solution (𝑥1(𝑡), 𝑥2(𝑡), 𝑦(𝑡)) of system (1.3) satisfies m ≤ 𝑥1(𝑡) ≤M, m ≤ 𝑥2(𝑡) ≤ M, m ≤ 𝑦(𝑡) 
≤ M as t→ ∞ . 

The following lemmas are useful for the proof of the main results. 

Lemma 2.1[17]. Suppose V∈ 𝑉0 and assume that 

{
𝐷+𝑉(𝑡, 𝑥) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑥)), 𝑡 ≠ 𝑛𝜏,

𝑉(𝑡, 𝑥(𝑡+)) ≤ 𝜓𝑛(𝑉(𝑡, 𝑥), 𝑡 = 𝑛𝜏,
 

where  𝑔: 𝑅+ × 𝑅+  → 𝑅  is continuous in (nτ, (n+1)τ]×𝑅+ , and for u∈ 𝑅+ , n∈N,  lim
(𝑡,𝑦)→(𝑛𝜏+,𝑢)

𝑔(𝑡, 𝑦) 

=𝑔(𝑛𝜏+, 𝑢) exists. 𝜓𝑛: 𝑅+ → 𝑅+  is non-decreasing. Let r(t) be the maximal solution of the scalar impulsive 

differential equation 

{

𝑢′ (𝑡) = 𝑔(𝑡, 𝑢(𝑡)),

𝑢(𝑡+) = 𝜓𝑛(𝑢(𝑡)),

𝑢(0+) = 𝑢0,

𝑡 ≠ 𝑛𝜏,
𝑡 = 𝑛𝜏, 

existing on [0,∞), then V (0+, 𝑥0) ≤𝑢0 implies that V (t, x(t)) ≤ r(t)(t ≥ 0). 

Lemma 2.2[18]. Assume that for y(t) > 0, t ≥ 0, it holds that 
𝑦′ (𝑡) ≤ 𝑦(𝑡)[𝑎 − 𝑏𝑦(𝑡 − 𝜏)] 

with initial conditions y(s) = ϕ(s) for s∈[−τ, 0], where a, b are positive constants. Then there exists a 

positive constant 𝑦∗ such that 

𝑙𝑖𝑚
𝑡→+∞

𝑠𝑢𝑝 𝑦(𝑡) ≤ 𝑦∗ ≔
𝑎𝑒𝛼𝜏

𝑏
 .                                                                (2.1) 

Lemma 2.3[18]. Assume that for y(t) > 0, t ≥ 0, it holds that 

𝑦′ (𝑡) ≥ 𝑦(𝑡)[𝑎 − 𝑏𝑦(𝑡 − 𝜏)] 

with initial conditions y(s) = ϕ(s) for s∈[−τ, 0], where a, b are positive constants. If (2.1) holds, then there 

exists a positive constant 𝑦∗ such that 

𝑙𝑖𝑚
𝑡→+∞

𝑖𝑛𝑓 𝑦(𝑡) ≥𝑦∗ ≔
𝑎𝑒𝛼(1−𝑒

𝛼𝜏)𝜏

𝑏
 . 

Consider the system (1.2), integrating and solving the first two equations of system (1.2) between pulses, we 

have 

𝑥𝑖(𝑡) = [
𝑏𝑖

𝑎𝑖
+ (

1

𝑥𝑖(𝑛𝜏
+)
−
𝑏𝑖

𝑎𝑖
) exp(−𝑎𝑖(𝑡 − 𝑛𝜏))]

−1, nτ < t ≤ (n + 1)τ, i = 1, 2.  (2.2) 

By considering the last two equations of system (1.2), we obtain the following stroboscopic map of 

system (1.2): 

{
 

 𝑥1,(𝑛+1)𝜏 =
𝑥1,𝑛𝜏

ℎ1 + 𝑐1𝑥1,𝑛𝜏
+ 𝑑1[

𝑥2,𝑛𝜏
ℎ2 + 𝑐2𝑥2,𝑛𝜏

−
𝑥1,𝑛𝜏

ℎ1 + 𝑐1𝑥1,𝑛𝜏
],

𝑥2,(𝑛+1)𝜏 =
𝑥2,𝑛𝜏

ℎ2 + 𝑐2𝑥2,𝑛𝜏
− 𝑑2[

𝑥2,𝑛𝜏
ℎ2 + 𝑐2𝑥2,𝑛𝜏

−
𝑥1,𝑛𝜏

ℎ1 + 𝑐1𝑥1,𝑛𝜏
],
                             (2.3) 

where 𝑥𝑖,(𝑛+1)𝜏 = 𝑥𝑖[(𝑛 + 1)𝜏
+], ci =

𝑎𝑖

𝑏𝑖
(1 − e−𝑎𝑖τ)> 0, and hi =e−𝑎𝑖τ < 1. Equations (2.3) are differential 

equation, which describes the densities of population in the two patches at a pulse in terms of values at the 

previous pulse. In other words, we are stroboscopically sampling at its pulsing period. The dynamical 

behavior of system (2.3) coupled with (2.2) determine the dynamical behavior of system (1.2). To write 

system (1.2) as a map, we define the map F:𝑅+
2→𝑅+

2: 

{

𝐹1(𝑥) =
𝑥1

ℎ1 + 𝑐1𝑥1
+ 𝑑1[

𝑥2
ℎ2 + 𝑐2𝑥2

−
𝑥1

ℎ1 + 𝑐1𝑥1
],

𝐹2(𝑥) =
𝑥2

ℎ2 + 𝑐2𝑥2
− 𝑑2[

𝑥2
ℎ2 + 𝑐2𝑥2

−
𝑥1

ℎ1 + 𝑐1𝑥1
],

 

The set of all iterations of the map F is equivalent to the set of all density sequences generated by system 

(2.3) and F(x) is the map evaluated at the point x = (𝑥1, 𝑥2)∈𝑅+
2 . Consequently, in system (2.3), Fn describes 

the population densities in the time nτ. 

Lemma 2.4[7]. There exists a unique positive fixed point q = (𝑞1, 𝑞2) of the map F, and for every x = 

(𝑥1, 𝑥2) > 0, Fn(x) → q as n →∞. This implies the fixed point q = (𝑞1, 𝑞2) of F is globally stable. So all 

trajectories of system (1.2) approach the positive periodic solution (𝑥1
∗(t), 𝑥2

∗(t)) with period τ , i.e., 

𝑥𝑖
∗(t) = [

𝑏𝑖

𝑎𝑖
+ (

1

𝑞𝑖
−
𝑏𝑖

𝑎𝑖
)exp(−𝑎𝑖(𝑡 − 𝑛𝜏))]

−1, nτ < t ≤ (n+1)τ, i = 1,2.                   (2.4) 



Journal of Information and Computing Science, Vol. 11(2016) No. 4, pp 312-320 

 

 

JIC email for subscription: publishing@WAU.org.uk 

315 

3. Main results 

In this section, we will establish the sufficient conditions ensuring the global attractivity of predator-

extinction periodic solution and the permanence of system (1.3). 

Theorem 3.1. Assume that 

δ <√e,                                                                 (H1) 

and 

𝑐2[
𝑏1
𝑎1
+ (

1
𝑞1
−
𝑏1
𝑎1
) 𝑒𝑥𝑝(−𝑎1𝜏)]

−1

𝑒 + [
𝑏1
𝑎1
+ (

1
𝑞1
−
𝑏1
𝑎1
) 𝑒𝑥𝑝(−𝑎1𝜏)]

−1 + [
𝑏1
𝑎1
+ (

1
𝑞1
−
𝑏1
𝑎1
) 𝑒𝑥𝑝(−𝑎1𝜏)]

−2
< 𝑑            (H2) 

hold, and then system (1.3) admits a predator-extinction periodic solution, which is globally attractive, and δ 

is defined later. 

Proof. Denote the predator-extinction periodic solution of system (1.3) by (𝑥1
∗(t), 𝑥2

∗(t), 0), then the 

existence of (𝑥1
∗(t), 𝑥2

∗(t), 0) can be derived easily from Lemma (2.4), we will prove that the predator-

extinction periodic solution (𝑥1
∗(t), 𝑥2

∗(t), 0) of system (1.3) is globally attractive. 

From the first equation of system (1.3), we have 

𝑥1
′(𝑡) ≤ 𝑥1(𝑡)[𝑎1 − 𝑏1𝑥1(𝑡)].                                                (3.1) 

Consider the following comparison system of the subsystem of (1.3) 

{
 
 

 
 
𝑢1
′ (𝑡) = 𝑢1(𝑡)(𝑎1 − 𝑏1𝑢1(𝑡)),

𝑢2
′ (𝑡) = 𝑢2(𝑡)(𝑎2 − 𝑏2𝑢2(𝑡)),

Δ𝑢1(𝑡) = 𝑑1(𝑢2(𝑡) − 𝑢1(𝑡)),

Δ𝑢2(𝑡) = −𝑑2(𝑢2(𝑡) − 𝑢1(𝑡)).

𝑡 ≠ 𝑛𝜏,

𝑡 = 𝑛𝜏,
                                     (3.2) 

From Lemma 2.4, we obtain the boundary periodic solution of system (3.2) 

𝑢𝑖
∗(t) = [

𝑏𝑖

𝑎𝑖
+ (

1

𝑞𝑖
−
𝑏𝑖

𝑎𝑖
) exp(−𝑎𝑖(𝑡 − 𝑛𝜏))]

−1, nτ < t ≤ (n + 1)τ (i = 1, 2),                (3.3) 

which is globally asymptotically stable. By Lemma 2.1 and Lemma 2.4, we have 

𝑥𝑖 (𝑡) ≤ 𝑢𝑖 (𝑡) → 𝑥𝑖
∗(𝑡), t→ ∞.                                               (3.4) 

For any 𝜀1> 0, as long as 𝜀1 is small enough , there exists a nonnegative integer 𝑛1 such that following 

inequalities hold. 

𝑥1(𝑡) < 𝑥1
∗(𝑡) + ε1 ≤ [

𝑏1

𝑎1
+ (

1

𝑞1
−
𝑏1

𝑎1
) 𝑒𝑥𝑝(−𝑎1𝜏)]

−1 + ε1 ≔ 𝛿, 

𝑥2(𝑡) < 𝑥2
∗(𝑡) + ε1 ≤ [

𝑏2

𝑎2
+ (

1

𝑞2
−
𝑏2

𝑎2
) 𝑒𝑥𝑝(−𝑎2𝜏)]

−1 + ε1 ≔ ϑ,                       (3.5) 

where n𝜏 < t ≤ (n + 1) 𝜏, n 𝜏 > 𝑛1 𝜏 . From the third equation of system (1.3) and (3.5), we have 

𝑦′(𝑡) ≤ 𝑦(𝑡) [−𝑑 +
𝑐2𝛿

𝑒 + 𝛿 + 𝛿2
− 𝑞𝑦(𝑡 − 𝜏2)] , t  >  n1 𝜏 + τ̃.         (3.6) 

On the other hand, from (H1), (H2) and (3.5), we can obtain 
𝑐2𝛿

𝑒 + 𝛿 + 𝛿2
< 𝑑.                                                                   (3.7) 

 

From (3.6), (3.7) and Lemma 2.2, we have y(t) ≤ 0 as t → ∞. Incorporating the positivity of y(t), we 

have lim
t→∞

𝑦(𝑡) = 0. Hence, for any 𝜀2 >0, if 𝜀2 is small enough, there exists an integer n2 (n2τ > n1τ +τ̃ ) 

such that the following inequality holds: 

0 < 𝑦(𝑡) < ε2, t > 𝑛2τ.                                                      (3.8) 

From the first equation of (1.3) and (3.8), we have 

𝑥1
′(𝑡) ≥ 𝑥1(𝑡)[𝑎1 − 𝑏1𝑥1(𝑡) −

𝑐1ε2

𝑒 + 𝑥1(𝑡) + 𝑥1
2(𝑡)

] 

≥ 𝑥1(𝑡)[𝑎1 − 𝑏1𝑥1(𝑡) −
𝑐1ε2

𝑒
]                                                               (3.9) 

for all 𝑡 > 𝑛2τ. Consider the comparison system of the subsystem of (1.3): 
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{
 
 

 
 𝑤1

′(𝑡) = 𝑤1(𝑡) (𝑎1 −
𝑐1ε2

𝑒
− 𝑏1𝑤1(𝑡)) ,

𝑤2
′(𝑡) = 𝑤2(𝑡)(𝑎2 − 𝑏2𝑤2(𝑡)),

Δ𝑤1(𝑡) = 𝑑1(𝑤2(𝑡) − 𝑤1(𝑡)),

Δ𝑤2(𝑡) = −𝑑2(𝑤2(𝑡) − 𝑤1(𝑡)),

𝑡 ≠ 𝑛𝜏,

𝑡 = 𝑛𝜏,
                                 (3.10) 

from Lemma 2.4, we can obtain the boundary periodic solutions of (3.10) 

𝑤1
∗(𝑡) = [

𝑏1

𝑎1−
𝑐1ε2
𝑒

+ (
1

𝑞1
∗ −

𝑏1

𝑎1−
𝑐1ε2
𝑒

)𝑒𝑥𝑝 (−(𝑎1 −
𝑐1ε2

𝑒
)(𝑡 − 𝑛𝜏))]−1, 

𝑤2
∗(𝑡) = [

𝑏2

𝑎2
+ (

1

𝑞2
∗ −

𝑏2

𝑎2
) 𝑒𝑥𝑝(−𝑎2(𝑡 − 𝑛𝜏))]

−1,                                  (3.11) 

which is globally asymptotically stable, where nτ < t ≤ (n + 1)τ , n >𝑛2 , 𝑞1
∗  and 𝑞2

∗  are confirmed 

homoplastically as 𝑞1 and 𝑞2. By Lemma 2.1 and Lemma 2.4, it can be gotten that 

𝑥1(𝑡) ≥ 𝑤1(𝑡) → 𝑤1
∗(𝑡), 𝑥2(𝑡) ≥ 𝑤2(𝑡) → 𝑤2

∗(𝑡), nτ < t ≤ (n + 1)τ , nτ>𝑛2τ. 

On the other hand, let 𝜀2→ 0, and we have 

𝑤1
∗(𝑡) → 𝑥1

∗(𝑡), 𝑤2
∗(𝑡) → 𝑥2

∗(𝑡)                                                   (3.12) 

for large enough t. Therefore, for any small enough ε3> 0, there exists an integer 𝑛3 (𝑛3 > 𝑛2) such that the 

following inequalities hold:  

𝑥1(𝑡) > 𝑥1
∗(𝑡) − ε1, 𝑥2(𝑡) > 𝑥2

∗(𝑡) − 𝜀3, t> 𝑛3τ.                                   (3.13) 

Let ε1 → 0, ε3 → 0, combining (3.5) and (3.13), we have 

𝑥1(𝑡) → 𝑥1
∗(𝑡), 𝑥2(𝑡) → 𝑥2

∗(𝑡), 𝑦(𝑡)=0, t→ ∞. 

Therefore, the predator-extinction periodic solution (𝑥1
∗(𝑡), 𝑥2(𝑡), 0) of system (1.3) is globally attractive. 

Remark 3.1. If assumptions (H1) and (H2) hold, then the prey species must be permanent. If not, then it 

may be extinct, as a result, the predator species y will also be extinct because its survival is absolutely 

dependent on 𝑥1. However, when y is extinct, 𝑥1 will not turn to extinction because Lemma 2.4 shows that 

𝑥1 has a globally asymptotically stable positive τ -periodic solution 𝑥1
∗(𝑡). 

Theorem 3.2. Assume that (H1) and  
𝑐2𝑞̃1

𝑒 + 𝑞̃1 + 𝑞̃1
2 > 𝑑                                                                        (H3)   

hold, where 𝑞̃1 is to be defined, then system (1.3) is permanent. 

Proof. Firstly, we suppose that (𝑥1(t), 𝑥2(t), y(t)) are ultimately bounded, e.g., there exists a constant M > 

0 such that 𝑥1(t) < M, 𝑥2(t) < M, y(t) < M as t → ∞. From system (1.3), it can be obtained that 

{
 
 

 
 
𝑥1
′(𝑡) ≤ 𝑥1(𝑡)(𝑎1 − 𝑏1𝑥1(𝑡)),

𝑥2
′ (𝑡) = 𝑥2(𝑡)(𝑎2 − 𝑏2𝑥2(𝑡)),

Δ𝑥1(𝑡) = 𝑑1(𝑥2(𝑡) − 𝑥1(𝑡)),

Δ𝑥2(𝑡) = −𝑑2(𝑥2(𝑡) − 𝑥1(𝑡)),

𝑡 ≠ 𝑛𝜏,

𝑡 = 𝑛𝜏.
                                        (3.14) 

Via similar argument as in the proof of Theorem 3.1, we have 

𝑥1(𝑡) < 𝑥1
∗(𝑡) + ε1 ≤ [

𝑏1

𝑎1
+ (

1

𝑞1
−
𝑏1

𝑎1
) 𝑒𝑥𝑝(−𝑎1𝜏)]

−1 + ε1 ≔ 𝛿, 

𝑥2(𝑡) < 𝑥2
∗(𝑡) + ε1 ≤ [

𝑏2

𝑎2
+ (

1

𝑞2
−
𝑏2

𝑎2
) 𝑒𝑥𝑝(−𝑎2𝜏)]

−1 + ε1 ≔ ϑ,                     (3.15) 

where n 𝜏 < t ≤ (n + 1) 𝜏, n 𝜏 > n1 𝜏 . From the third equation of system (1.3), we have 

𝑦′ (𝑡) ≤ 𝑦(𝑡)[−𝑑 +
𝑐2𝛿

𝑒+𝛿+𝛿2
− 𝑞𝑦(𝑡 − 𝜏2)], t > n1 𝜏 + τ̃.                          (3.16) 

From (H1), (H3) and (3.15), we have 
𝑐2𝛿

𝑒+𝛿+𝛿2
> 𝑑.                                                                      (3.17) 

By Lemma 2.2, we can obtain 

𝑙𝑖𝑚
𝑡→+∞

𝑠𝑢𝑝𝑦(𝑡) ≤

𝑐2𝛿

𝑒 + 𝛿 + 𝛿2
− 𝑑

𝑞
exp((

𝑐2𝛿

𝑒 + 𝛿 + 𝛿2
− 𝑑) 𝜏2) ≔ η.            (3.18) 

Take M = max{δ, ϑ, η}, then 𝑥1(t), 𝑥2(t), y(t) are ultimately bounded. 

Secondly, we prove that there exists a positive constant m > 0 (m < M) such 𝑥1(t) > m, 𝑥2(t) > m, y(t) > m as 

t → ∞. From system (1.3) and (3.18), we have 
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{
 
 

 
 𝑥1

′(𝑡) ≥ 𝑥1(𝑡) (𝑎1 −
𝑐1𝜂

𝑒
− 𝑏1𝑥1(𝑡)) ,

𝑥2
′ (𝑡) = 𝑥2(𝑡)(𝑎2 − 𝑏2𝑥2(𝑡)),

Δ𝑥1(𝑡) = 𝑑1(𝑥2(𝑡) − 𝑥1(𝑡)),

Δ𝑥2(𝑡) = −𝑑2(𝑥2(𝑡) − 𝑥1(𝑡)),

𝑡 ≠ 𝑛𝜏,

𝑡 = 𝑛𝜏.
                                       (3.19) 

Consider the comparison system of (3.19), we have 

{
 
 

 
 𝑣1

′(𝑡) = 𝑣1(𝑡) (𝑎1 −
𝑐1𝜂

𝑒
− 𝑏1𝑣1(𝑡)) ,

𝑣2
′ (𝑡) = 𝑣2(𝑡)(𝑎2 − 𝑏2𝑣2(𝑡)),

Δ𝑥1(𝑡) = 𝑑1(𝑣2(𝑡) − 𝑣1(𝑡)),

Δ𝑥2(𝑡) = −𝑑2(𝑣2(𝑡) − 𝑣1(𝑡)),

𝑡 ≠ 𝑛𝜏,

𝑡 = 𝑛𝜏.
                                      (3.20) 

From Lemma 2.4, we obtain the boundary periodic solution of (3.20) as follows 

𝑣1
∗(𝑡) = [

𝑏1

𝑎1−
𝑐1ε2
𝑒

+ (
1

q̃1
−

𝑏1

𝑎1−
𝑐1ε2
𝑒

)𝑒𝑥𝑝 (−(𝑎1 −
𝑐1ε2

𝑒
)(𝑡 − 𝑛𝜏))]−1, 

𝑣2
∗(𝑡) = [

𝑏2

𝑎2
+ (

1

q̃2
−
𝑏2

𝑎2
) 𝑒𝑥𝑝(−𝑎2(𝑡 − 𝑛𝜏))]

−1,                                   (3.21) 

which is globally asymptotically stable, where nτ< t ≤ (n + 1)τ , q̃1  and q̃2  are confirmed 

homoplastically as q1 and q2. By Lemma 2.1 and Lemma 2.4, we have 

𝑥1(𝑡) ≥ 𝑣1(𝑡) → 𝑣1
∗(𝑡), 𝑣2(𝑡) ≥ 𝑣2(𝑡) → 𝑣2

∗(𝑡), nτ<t≤ (n + 1)τ .                    (3.22) 

Let 𝑚1= inf{𝑣1
∗(t)| t∈[0,τ ]}, m2 = inf{𝑣2

∗(t)| t∈[0, τ ]}, for any 𝜀4 > 0, if it is small enough, there 

exists an integer 𝑛4 such that the following inequalities hold: 

𝑥1(𝑡) ≥ 𝑣1
∗(𝑡) − ε4 ≥ m1 − ε4, 𝑥2(𝑡) ≥ 𝑣2

∗(𝑡) − ε4 ≥ m2 − ε4, t> 𝑛4𝜏.              (3.23) 

Let 𝜀4→ 0, we have 

𝑙𝑖𝑚
𝑡→+∞

𝑖𝑛𝑓 𝑥1(𝑡) ≥ m1, 𝑙𝑖𝑚
𝑡→+∞

𝑖𝑛𝑓 𝑥2(𝑡) ≥ m2.                         (3.24) 

According to H3, for above small enough 𝜀4, we have 
𝑐2(q̃1−ε4)

𝑒+(q̃1−ε4)+(q̃1−ε4)
2 > 𝑑.                                                             (3.25) 

In view of (3.21) and (3.23), for above small enough𝜀4 > 0, when t → ∞, we have 

m1 ≥ q̃1 − 𝜀4.                                                                (3.26) 

Combining (3.25) and (3.26), we have 
𝑐2m1

𝑒+m1+𝑚1
2 > 𝑑.                                                                        (3.27) 

From the third equation of system (1.3) and (3.24), we have 

𝑦′ (𝑡) ≥ 𝑦(𝑡)[−𝑑 +
𝑐2m1

𝑒+m1+𝑚1
2 − 𝑞𝑦(𝑡 − 𝜏2)].                              (3.28) 

According to (3.27), (3.28) and Lemma 2.3, we have 

𝑙𝑖𝑚
𝑡→+∞

𝑖𝑛𝑓 𝑦(𝑡) ≥

𝑐2m1

𝑒 +m1 +𝑚1
2 − 𝑑

𝑞
exp{(

𝑐2m1

𝑒 + m1 +𝑚1
2 − 𝑑)

 

[1 − exp((
𝑐2m1

𝑒 +m1 +𝑚1
2 − 𝑑) 𝜏2)]𝜏2} ≔ 𝑚3. 

Then, take m = min{𝑚1, 𝑚2,𝑚3}, and we have 𝑥1(𝑡) > m, 𝑥2(𝑡) > m, 𝑦(𝑡)> m as t → ∞. 

Remark 3.2. From Theorem 3.2, it is shown that if we can guarantee that the growth of the predator by 

foraging minus its death rate is positive, system (1.3) is permanent. 

4. Numerical simulation and discussion 

In this paper, a delayed predator-prey model with Holling-IV functional response and impulsive 

diffusion is studied. By using comparison theorem of impulsive differential equation and other analysis 

methods, the global attractivity of predator-extinction periodic solution and permanence of system (1.3) are 

established. 

Numerical verification of the results is necessary for completeness of the analytical study, therefore, we 

present some numerical simulations to substantiate and argument our analytical findings of system (1.3). In 

system (1.3), we choose τ = 2.  
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In Table 1, we give some parameter values and emphasize the parameters c2, d, τ1 and τ2. Furthermore, 

if, in Table 1, we keep some parameter values unchanged, just adjust the parameters c2, d, τ1 and τ2, and 

give different cases. The details are given in Table 2. 

Table 1. Parameter values used in the simulations of model (1.3). 

Parameter Interpretation Value 

𝒂𝟏 the intrinsic growth rate of prey in Patch 1 8 

𝒃𝟏 the self-inhibition coefficient of prey in Patch 1 5 

𝒄𝟏 the capture rate of predator on prey 10 

𝒂𝟐 the intrinsic growth rate of prey in Patch 2 2 

𝒃𝟐 the self-inhibition coefficient of prey in Patch 2 2 

𝒄𝟐 the conversion rate of nutrition – 

e the half-saturation constant 4 

d the death rate of the predator in Patch 1 – 

q the self-inhibition coefficient of predator in Patch 1 0.4 

𝝉𝟏 the gestation period of the predator – 

𝝉𝟐 the feedback time delay of predator – 

𝒅𝟏        the net dispersal rate of prey between Patch 1 and Patch 2 0.2 

𝒅𝟐       the net dispersal rate of prey between Patch 1 and Patch 2 0.3 

 

Table 2. Simulations of model (1.3). 
Case d 𝒄𝟐 𝝉𝟏 𝝉𝟐 𝒙𝟏 𝒙𝟐 y Fig. 

1 3 2 0.1 0.1 Permanent Permanent Extinct Fig. 1 

2 1 8 0.1 0.1 Permanent Permanent Permanent Fig. 2 

3 1 8 2 2 Permanent Permanent Permanent Fig. 3 

 

 

(a)                                              (b) 

Fig. 1. Dynamical behavior of system (1.3) with d = 3, c2= 2, τ1= 0.1, τ2 = 0.1, initial values are taken as 

(x1(0),x2(0), y(0)) = (2,1,0.8), (1.6,1.2,0.6), (1.2,0.8,0.4), respectively.  

(a) time-series of system (1.3); (b) the phase portrait of system (1.3). 
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(a)                                       (b) 

Fig. 2. Dynamical behavior of system (1.3) with d = 1, c2= 8, τ1= 0.1, τ2 = 0.1, and  

       initial values (x1(0), x2(0), y(0)) = (1.4,1,0.8). (a) time-series of system (1.3); 

 (b) the phase portrait of system (1.3). 

   

(a)                                         (b) 
Fig. 3. Dynamical behavior of system (1.3) with d = 1, c2= 8, τ1= 2, τ2 = 2, and initial values          

      (x1(0),x2(0), y(0))= (1.4,1,0.8). (a) time-series of system (1.3), (b) the phase portrait of system (1.3). 

 

According to Fig. 1 and Fig. 2, we can observe that: Fig. 1 shows that the prey species will be globally 

attractive and the predator species will be extinct when conditions (H1) and (H2) hold. Fig. 2 shows that the 

prey species and the predator species will be permanent when condition (H3) holds. 

From the case 1 and the case 2 in Table 1, it is found that the parameters d and c2 play an important role in 

the permanence of system (1.3). 

From Fig. 2 and Fig. 3, we can obtain that time delays (τ1 and τ2) are harmless for permanence of 

populations even though time delays (τ1 and τ2) have a tendency to produce oscillations. 
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