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Abstract. The synchronization of the Hindmarsh-Rose neuron system with external disturbance is 

investigated via sliding mode control. Based on the Lyapunov stability theory, a single sliding mode 

controller is derived even when the response Hindmarsh-Rose neuron system with external disturbance. The 

numerical simulation is presented to verify the effectiveness of the proposed control scheme. 
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1. Introduction  

The brain consists of about a hundred specialized modules with different functions. These modules form 

complex networks [1] which shows complicated dynamic behaviors, some of which  are closely related to 

physiological phenomena of the brain. Therefore, many researchers have explored the dynamics between the 

neurons of the brain to explain some neurophysiologic phenomena[2-6], especially the synchronization of 

the neurons [7-12]. Experimental studies [2,8] have pointed out that the synchronization is significant in the 

information processing of large ensembles of neurons. Hence, it is necessary to employ networks to 

investigate the complex spatial-temporal behavior of neural systems. Some results have been obtained about 

it. For example, in [13], it was noted in three types of regular networks that the critical values depended on 

specific coupling styles when neurons achieved complete synchronization. Shi et al. studied spike 

synchronization and burst synchronization of two coupled Hindmarsh-Rose (HR) neurons[14]. Wang et al. 

investigated ordered burst synchronization and complex spatial temporal firing behavior in a ring network of 

MHH neurons with excitatory chemical synapses[15]. Zheng et al. investigated the effect of various network 

parameters on bursting dynamics in a small-world HR neuronal network in detail[16]. 

In this paper, the synchronization of two identical Hindmarsh-Rose (HR) neuron systems is to be 

investigated. Based on the Lyapunov stability theory, a single sliding mode controller is derived even when 

the response Hindmarsh-Rose neuron system with external disturbance. Furthermore, the sufficient 

conditions for synchronization of the coupled systems with chaotic bursting behavior can be obtained. 

Finally, numerical simulations are given to verify the effectiveness of the proposed scheme.  

2. Hindmarsh-Rose neuron system 

In this section, the considered Hindmarsh-Rose neuron systems is given to realize the synchronization 

of the neurons with external disturbance. The HR neuronal model was first proposed by Hindmarsh and Rose 

as a mathematical representation of the firing behavior of neurons, and it was originally introduced to give a 

bursting type with long inters pike intervals of real neurons [17]. The form of Hindmarsh-Rose system is 

given by 
2 3

1 1 1 2 3 extx ax bx x x I     , 

2

2 1 2x c dx x   , 

3 1 3( ( ) )x r S x k x   ,                                                            (1) 

where 1x  is the membrane potential, 2x  is associated with the fast current of Na or K ions, and 3x  is 

associated with the slow current of , for example, Ca  ions. a , b , c , d , r , S , k , extI  are real constants. 

The Hindmarsh-Rose system is a slow-fast system. Slow oscillations 3x  drive the fast subsystem ( 1x , 2x ) 
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through periods of oscillatory and quiescent behavior. Model (1) may describe regular bursting or chaotic 

bursting for certain domains of the parameters. If the parameters are taken as a = 3.0, b = 1.0, c = 1.0, d = 

5.0, r = 0.006, S = 4.0, k = 1.6, system (1) is regular bursting for extI = 2.0 and chaotic bursting for extI = 3.0, 

respectively (see Fig.1). 

 

Fig.1. (a) Regular bursting of system (1) for extI =2.0, 

(b) Chaotic bursting of system (1) for extI =3.0. 

The response Hindmarsh-Rose system with external disturbances is described as follows: 
2 3

1 1 1 2 3 1 1( )exty ay by y y I d t U       , 

2

2 1 2 2 ( )y c dy y d t    , 

3 1 3 3( ( ) ) ( )y r S y k y d t    ,                                                        (2) 

where 1 ( )d t  and 3 ( )d t  are mismatched disturbances and 2 ( )d t  is a matched disturbance [18,19]. It is 

assumed that these disturbances are bounded, i.e. ( ) 1( 1,2,3)id t i   , where   is a constant. The aim 

of this paper is to design a controller 1U  such that the response Hindmarsh-Rose system (2) with 

disturbances is synchronous with the drive Hindmarsh-Rose system (1). 

For this end, let the error variables as  

1 1 1e y x  , 2 2 2e y x  , 3 3 3e y x  ,                                                 (3) 

in view of systems (1) and (2) , we have the following error dynamics: 
2 2

1 1 1 1 1 1 1 1 1 2 3 1 1( ) ( ) ( )e a y x e b y y x x e e e d t U         , 

2 1 1 1 2 2( ) ( )e d y x e e d t     , 

3 1 3 3( )e rSe re d t   .                                                                (4) 

3. Synchronization of Hindmarsh-Rose systems with disturbances 

3.1. Switching surface and controller design 

In this section, sliding mode control method is used to synchronize the coupled Hindmarsh-Rose 

systems with perturbations. This method involves two basic steps. The first step is selecting an appropriate 

switching surface such that the sliding motion on the sliding manifold is stable and ensures 

lim 0i
t

e


 ( 1,2,3)i  . The second step is establishing a robust control law which guarantees the existence of 

the sliding manifold 1( )s t = 0 even in the event of external perturbation. 

Let 

 
2 2

1 1 1 2 1 1 1 1 1 1 1 1( ) + ( )U u e e a y x e b y y x x e       ,                                      (5) 

and we have the following error system:  
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1 1 3 1 1( )e e e d t u     , 

2 1 1 1 2 2( ) ( )e d y x e e d t     , 

3 1 3 3( )e rSe re d t   .                                                           (6) 

By the concept of extended system [20], we construct an extended system as follows: 

1 4e e , 

2 1 1 1 2 2( ) ( )e d y x e e d t     , 

3 1 3 3( )e rSe re d t   , 

4 4 1 3 3 1 1( ) ( )e e rSe re d t d t u       ,                                          (7) 

and select a suitable sliding mode surface as 1s  0 , where 

1 4 1 1 3 3 4 4
0
( )

t

s e c e c e c e dt    ,                                                (8) 

and 1 3,c c , 4c  are constants to be determined. 

Theorem 1. Consider the error system (7), if this system is controlled by 1u  with 

1 1 4 3 1 1 3 3 4 4 1
0

[ ( / )]
t

u rSe e re c e c e c e k s dt         ,                           (9) 

where 
11

1

11

/ 1/
( / )

/ 1( / )

if ss
s

if ssign s


 



 
 


,   is a positive constant and 2 1k   , then the system 

trajectory converges to the sliding surface 1s  0 in a finite time. 

Proof. Consider the following Lyaponov function candidate 
2

1V s ,                                                                         (10) 

Taking the derivative of V with respect to time, one has 

V  1 4 1 1 3 3 4 42 [ ]s e c e c e c e    

1 4 1 3 3 1 1 1 3 3 4 4 12 [ ( ) ( ) ]s e rSe re d t d t c e c e c e u           

1 1 3 12 [ ( ) ( ) ( / )]s d t d t k s    .                                                                          (11) 

when 0  , the saturation nonlinearity 1( / )s   approaches the signum nonlinearity 1( )sign s . In the 

region 1s  , if 2 1k   , we have  

 V 1 3 12[ ]d d k s   2 ( ) 0V t   .                                                    (12) 

It shows that when 1(0)s  , 1s  will be strictly decreasing until it reaches the set 1s   in a finite 

time and remains inside thereafter. The set 1s   is called the boundary layer. On the other hand, in the 

boundary layer, we have 

V
2

1 3 1 1

2
2( )

k
d d s s


    

2

1 1

2
4

k
s s


  1/ 2 2

4
k

V V


  ,                                       (13) 

which implies that 

( )V t
/ 2

(0) t kV e
k

 
  .                                                   (14)  

The proof is completed. 

3.2. Synchronization analysis 

We are now in a position to present the synchronization analysis. Because of Theorem 1, we need to 

analyze the error system on the sliding mode surface. On the sliding mode surface, the error system is 
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1 4e e , 

2 1 1 1 2 2( ) ( )e d y x e e d t     , 

3 1 3 3( )e rSe re d t   , 

4 1 1 3 3 4 4 3 1( ) ( )e c e c e c e d t d t      .                                          (15) 

From (15), it can be gotten that 

1

3

4

e

e

e

 
 
 
 
 

=

1

3 3
0

4 3

(0) 0

(0)

(0)

t
At At

e

e e e d dt

e d d



    
    

    
         

 ,                                       (16) 

where  

1 3 4

0 0 1

0A rS r

c c c

 
 

  
    

.                                                             (17) 

The characteristic polynomial of matrix A  is 

  3 2

4 1 4 3 1( ) ( ) ( )f c r c c r r c S c          .                                 (18) 

According to Routh–Hurwitz theorem, we know that the real parts of its all characteristic roots are 

negative if and only if 

1 3 1( ) 0r c S c    , 

2 4 0c r    , 

3 4 1 4 3 1( )( ) ( ) 0c r c c r r c S c       .                                         (19) 

Obviously, there always exist such constants of 1c , 3c  and 4c  satisfying the condition in (19). 

Therefore, there are positive constants   and  , such that 
At te x e x   for every 3x R and 0t  . 

Thus 

1,3,4

2
max (0)t

i i
i

e e e 







  .                                                (20) 

Additionally, the following equation can be obtained 

2 2 2 1 1 1
0

{ (0) [ ( ) ( ) ] }
t

t te e e e d t d y x e dt    .                                  (21) 

Since a chaotic system has bounded trajectories, then there exists a positive constant M , such that 

, ( 1, 2,3)i ix y M i  , thus, 

2 2 1
0

{ (0) [ 2 ] }
t

t te e e e dM e dt   .                                      (22) 

It’s easy to get the following theorem and corollary. 

Theorem 2. If the controller is selected as  
2 2

1 1 1 2 1 1 1 1 1 1 1 1( ) ( )U u e e a y x e b y y x x e        ,                           (23) 

where 

1 1 4 3 1 1 3 3 4 4 1
0

[ sign( / )]
t

u rSe e re c e c e c e k s dt       ,                       (24) 

in which 1c , 3c , 4c   are constants satisfying the inequalities (19), 2 1k   , there exists a constant   

such that the controlled unified chaotic system (2)  with external perturbation is synchronous with the system 

(1) with ultimate error bound  , i.e.  

lim i i
t

y x 



  ( 1,2,3)i  .                                                    (25) 

It is worth mentioning that the controller in Theorem 2 could be implemented in practice because it is 

continuous and there is no chatter phenomenon. 
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4. Numerical simulations 

To verify the performance of the proposed method, numerical simulations are presented in this section. 

The initial values of the master system and the slave system are chosen as (1.0, 2.0, 3.0) and (2.0, 1.0, 5.0), 

respectively. The system parameters are taken as a = 3.0, b = 1.0, c = 1.0, d = 5.0, r = 0.006, S = 4.0, k = 

1.6, with which the dynamical behaviors is seen in Fig.1. The constants in the sliding mode are selected as 

1c =1, 3c =1, 4c =3, and the constant   in the sliding mode controller defined in Eq. (9) is selected as 0.01. 

All characteristic roots are derived as (-2.6221, -0.3524, -0.0195). When 1 ( )d t , 3 ( )d t  and 2 ( )d t  are chosen 

as 0.5sin 2t , 0.2cos t  and 0.3sin 2t , respectively. Fig.2 depicts the synchronization error of the state 

variables between the master system and the slave system. Obviously, the numerical simulations verify the 

theoretical analysis. 

 

Fig.2. Dynamics of error system (6) 

5. Conclusion 

In this paper, an extending sliding mode control method only with a single controller is presented. By 

means of the sliding mode control method, synchronization between Hindmarsh-Rose neuron systems with 

external perturbation is investigated and sufficient conditions of synchronization are derived. Furthermore, 

numerical simulations are also included to visualize the effectiveness and the feasibility of the developed 

approach. 
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