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Abstract. In this paper, Haar wavelet collocation method has been employed to solve problems occur in 

the mathematical modeling of induction motor. To approximate the solution algorithm based on Haar wavelet 

is considered. The order of convergence is estimated for discussed problems. The accuracy issues of the 

solutions are demonstrated by comparing with other numerical techniques existing in the literature. 
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1. Introduction  

Alfred Haar [1] introduced the notion of wavelets which are called Haar wavelets. These wavelets 

placed a crucial role for the numerical solution of differential or integral equations. At present there are two 

approaches to applying the Haar wavelet for integrating ordinary differential equations (ODE). In case of the 

first method for integrating ODE concept of operational matrix is introduced by Chen and Hsiao [2, 3]. 

Another approach is called direct method due to Lepik [4]. In this approach Haar functions are integrated 

directly. The direct method is easily applicable for calculating integrals of arbitrary order but the operational 

matrix method has been used mainly for first order integrals. Haar wavelets consists of piecewise constant 

functions and are therefore the simplest orthogonal wavelets with compact support. Here the fact that Haar 

wavelets are not continuous and hence derivatives do not exists at the braking points. So that it is not 

possible to apply the Haar wavelets for solving ODEs directly. The main advantage of the method is that it 

can be used directly without using restrictive assumptions. 

The fifth-order differential equations arise in modeling of induction motor with two rotor circuits. This 

model contains two stator state variables, two rotor state variables and one shaft speed. Normally, two more 

variables must be added to account for the effects of a second rotor circuit representing deep bars, a starting 

cage or rotor distributed parameters. To avoid the computational burden of additional state variables when 

additional rotor circuits are required model is often limited to the fifth order and rotor impedance is 

algebraically altered as function of rotor speed. This is done under the assumption that the frequency of rotor 

currents depends on rotor speed. This approach is efficient for the steady state response with sinusoidal 

voltage [5]. 

The existence and uniqueness solutions of fifth order boundary value problems (BVPs) are discussed by 

Agarwal [6]. Over the years some researchers have worked on induction motor problems by using different 

methods for numerical solutions. Reddy et al. [7] have demonstrated the superiority of the HWCM for the 

solution of seventh order ODEs of induction motor with two rotor circuits. Siddiqi et al. [8] estimated the 

solution for linear special case fifth-order two-point boundary value problems by non-polynomial sextic 

spline method (NPSS).  Farajeyan and Jalilian [9] have found the numerical solution by fifth order BVPs in 

off step points (OSPM). Mehdi Golomi et al. [10] solved fifth order differential equations by He’s 

Variational iteration method (VIM). This paper deals with fifth order ODEs arising in modeling of induction 

motor; these problems have the following general representation: 
(5) (1) (2) (3) (4)( ) ( , , , , , ), ( , ),y x f x y y y y y x c d                      (1) 

subject to the following conditions: 

Case I: Initial value problem:                 

                    
(1) (2) (3) (4)

1 1 1 1 1( ) , ( ) , ( ) , ( ) , ( ) .y c y c y c y c y c                            (2) 

Case II: Boundary value problems of Type 1:     
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(1) (2) (1)

2 2 2 2 2( ) , ( ) , ( ) , ( ) , ( ) .y c y c y c y d y d                         (3) 

             

Case III: Boundary value problem of Type 2:       

      
(1) (3) (1)

3 3 3 3 3( ) , ( ) , ( ) , ( ) , ( ) .y c y c y c y d y d                                       (4) 

Where ' , ' , ' , ' , ' ,i i i i is s s s s c     and d are real constants for 1,2,3.i   

This article is organized as, in section 2 notations of Haar wavelets and their integrals are introduced. In 

section 3, numerical algorithm based on wavelets is introduced. In section 4 convergence analysis is 

presented. In section 5 we reported our numerical results with comparison. In the final section conclusion of 

our work has been discussed. 

2. Haar wavelets and their integrals 

In this section, we obtain orthogonal basis for the subspaces of 2[ , ]L c d called Haar wavelet family. For 

this notations introduced in Ref. [4] are used. The interval [ , ]c d  is divided into 12J subintervals of equal 

length
1

( )

2J

d c
t



 
  
 

, where J  is called maximal level of resolution. We have coarser resolution values

0,1, 2, . . . ,j J  and translation parameter 0,1, 2,. . .,2 1jk   . With these two parameters thi  Haar wavelet 

in Haar family is defined as    

1 2

2 3

1, [ ( ), ( )),

( ) 1, [ ( ), ( )),

0, ,

i

for t i i

h t for t i i

otherwise

 

 




  



                                        (5) 

here 1 21, ( ) 2 , ( ) (2 1)i m k i c k t i c k t              and 3( ) 2( 1)i c k t     , where 2 .J j   

Above equations are valid for 2i  . 1( )h t  and 2 ( )h t  are called father and mother wavelets in Haar 

wavelet family and are given by 

1

1, [ , ),
( )

0, ,

for t c d
h t

otherwise


 


                          (6) 



2

1, , ,

( ) 1, , ,

0, ,

for t c p

h t for t p d

otherwise

 



   



                       (7) 

where, .
2

c d
p


  

Any function which is having finite energy on [ , ]c d , i.e. 2[ , ]f L c d  can be decomposed as infinite 

sum of Haar wavelets:                            

1

( ) ( ),i i

i

f x a h x




              (8)   

where 'ia s  are called Haar coefficients. If f is either piecewise constant or wish to approximate by 

piecewise constant on each subinterval then the above infinite series will be terminated at a finite number of 

terms. Since, we have explicit expression for each member of Haar family (5- 7). We can integrate as many 

times depend upon the context. The following notations are used for   times of integration of members in 

the family defined on [ , ) :c d  

             

  , ( ) ..... ( ) ,

t t t

i i

c c c

P t h x dx                    (9) 
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        , , ( ) .

d

i i

c

E P t dt                                                            (10) 

For 1i  , (9) becomes       

                    ,1

1
( ) ( ) ,

!
P t t c 



                                                             (11) 

for 2i  , we have 

           

 

1

1 1 2

,
1 2 2 3

1 2 3 3

0, [ , ( )),

1
( ( )) , [ ( ), ( )),

!

( ) 1
( ( )) 2( ( )) , [ ( ), ( )),

!

1
( ( )) 2( ( )) ( ( )) , [ ( ), ).

!

i

if t c i

t i if t i i

P t
t i t i if t i i

t i t i t i if t i d



  

  



  


   


   




  



 
   




     


     (12) 

3. Method of solution 

Haar wavelet collocation method: The proposed method is as follows [4, 7]. 

 Approximate highest derivative in terms of Haar wavelets 

 

12
(5)

1

( ) ( ).

J

i i

i

y x a h x





                 (13)  

  Decompose (4) (3) (2) (1)( ), ( ), ( ), ( )y x y x y x y x and ( )y x  in terms of integrated Haar functions and 

replace these in to the given linear differential equation. 

 Discritize equation obtained in above at collocation points: 11( )
, 1,2,...2 ,

2

Jl l
l

x x
x l  
   

where ,nx c n t   10,1,2,...,2 .Jn  Resulting into 1 12 2J J   linear algebraic system. Calculate the 

wavelet coefficients 'ia s  and obtain the approximate solution for problem of induction motor. 

In this paper, problems originating in modeling of induction motor defined over [0,1]  are considered. 

The proposed method is further simplified with the help of particular initial or boundary conditions. For IVPs:

0c  and BVPs : 0, 1.c d   Integrate equation (13) from 0 to x  five times we obtained the approximate 

solution. 
122 3 4

(1) (2) (3) (4)
5,

1

( ) (0) (0) (0) (0) (0) ( )
2! 3! 4!

J

i i

i

x x x
y x y xy y y y a P x





       .     (14)  

Using equation (2) we can find the solution for initial value problem. Approximate solution for BVPs 

can be estimated by finding the (3) (4)(0), (0)y y values using boundary conditions of type 1 and 

(2) (4)(0), (0)y y values using boundary conditions of type 2, these unknowns are expressed as follows          

Type 1:               
12

(3)
2 2 2 2 2 5, 4,

1

(0) 24 18 6 24 6 ( 24 6 ),

J

i i i

i

y a E E    





                  (15) 

12
(4)

2 2 2 2 2 5, 4,

1

(0) 72 48 12 72 24 (72 246 ),

J

i i i

i

y a E E    





           (16) 

 Type 2:          

           

2
(2)

3 3 3 3 3 5, 4,

1

1
(0) 4 3 4 (4 ),

6

M

i i i

i

y a E E    


            (17)

 

2
(4)

3 3 3 3 3 5, 4,

1

(0) 24 12 2 24 12 (24 12 ).
M

i i i

i

y a E E    


          (18) 

Where,       
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1 1

4, 4, 5, 5,

0 0

( ) ( ) .i i i iE P x dx and E P x dx          (19) 

4. Convergence analysis of Haar wavelet discretization method (HWDM) 

The accuracy issue of the HWDM was open from year 1997. This issue is clarified by J. Majak et al. 

[11] in 2015. Following results are due to notations introduced in Ref. [11].The general form of fifth order 

ODE is 

 (1) (2) (3) (4) (5), , , , , , 0.f x y y y y y y                     (20) 

Expand fifth order derivative into Haar wavelets as 
5

5
1

( )
( )i i

i

d y x
a h x

dx





                            (21) 

2 1

1 1 2 1 2 1
0 0

( ).

j

j jk k
j k

a h a h x
 

   
 

                                 (22) 

In equations (21) and (21) 2 1 , 0,1,....,2 1j jk i k     . Integrating equation (22) five times, we 

obtain the solution of DE (20) as                                           
2 1

1

2 1 5, 2 1
0 0

( ) ( ) ( ).
5!

j

j jk k
j k

a
y x a P x B x

 

   
 

                      (23)  

Here 5, 2 1
( )j k

P x
  can be calculated with aid of equation (12) and ( )B x is a boundary term. 

Let us assume that 
5

2

5

( )
( )

d y x
L R

dx
 is a continuous and its next derivative is bounded on [0,1] , i.e. 

6

6

( )
:

d y x

dx
    

Let 1

2 1
1

2 2 1 5,2 1
0 0

( ) ( ) ( )
5!

j

J j j

J

k k
j k

a
y x a P x B x



   
 

    be the approximation to unknown y  by Haar  

wavelets. The absolute error at the thJ  resolution is denoted as 12
| |JE  and is given by 

1 1

2 1

2 2 2 1 5,2 1
1 0

( ) ( ) ( ) .

j

J J j jk k
j J k

E y x y x a P x 

 

   
  

                              (24) 

Norm of the error in Hilbert space 2( )L R [11] is defined as 

 1

21 2 1
2
22 2 1 5,2 1

1 00

|| || ( )

j

J j jk k
j J k

E a P x dx

 

   
  

    

12 1 2 1

2 1 2 1 5,2 1 5,2 1
1 0 1 0 0

( ) ( ) ,

j r

j r j rk s k s
j J k r J s

a a P x P x dx
   

       
     

                               (25) 

J. Majak et al. [11, 12] have shown that 
1

, for 2 1
2

j
i J

a i k



     and 5, ( )iP x are monotonically 

increasing on[0,1) . Equation (25) can be estimated as 

1

2 4 2 42 1 2 12
2

1 1 1 12 2
1 0 1 0

1 1 1 1 1 1 1 1 1 1
. (26)

4 6 12 6 122 2 2 2 2 2

j r

J j r j j j j
j J k r J s

E




   

   
     

          
              

             
           

Above equation can be simplified as  
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2

1 2 1
1

1 1 1
factrization and , m 1,2.

2 2 1 2r m J
r J



 
 

      
        

      
 
 

  

1

2 4

1 12 2

1 1 1

36 102 2
J J J

E


  

    
     
    

.                                      (27) 

Therefore,  

1

2

12 2

1
.

2
J J

E O 

  
   

   
                                                                (28) 

From equation (28), we can conclude that the convergence is of order two. 

5. Numerical studies 

We considered some problems of induction motor whose exact solutions are known. The approximate 

solution for each problem is devised by the HWCM. All computations are carried out by MATLAB software. 

Example 1: Consider the initial value problem [10], 
(5) 2( ) 5( 1)sin( ) 5( 5)cos( ) ( ), [0,1],y x x x x x x xy x x         (29) 

with initial conditions:     
(1) (2) (3) (4)(0) 5, (0) 5, (0) 5, (0) 15, (0) 5.y y y y y          (30) 

Using the method of solution solving equation (29), we get the Haar coefficients

11 2 2
[ , ,..., ] [ 21.8, 2.9, . . . , 1.4] for J=4.Ja a a      . By the help of 'ia s  Haar wavelet solution y(x) is found. 

Obtained solution is represented with analytic solution ( ) 5(1 )cos( )y x x x    in Table 1.    

Example 2: Consider the induction motor problem [5], 
(5) ( ) sin( ) ( ) cos( )(1 sin( )) sin( )(sin( ) 1), [0,1],y x x y x x x x x x         (31) 

with boundary  conditions:   
(1) (1) (2)(0) 1, (1) cos(1) sin(1), (0) 1, (1) cos(1) sin(1), (0) 1.y y y y y                                    (32) 

Worked out the equation (31) of Type1, we found the Haar coefficients

11 2 2
[ , ,..., ] [0.38, 0.33, ..., 0.08] for J=5.Ja a a    Deduced the solution using ' ,ia s  equations (14-16) and is 

represented with the analytic solution ( ) cos( ) sin( )y x x x   in Table 2. 

Example 3: Consider the induction motor problem [5], 
(5) ( ) ( ) 4 cos( ) 2 (1 sin( )) 5 sin( ), [0,1],x x xy x y x e x e x e x x                                      (33) 

with boundary conditions: 
(1) (1) (2)(0) 1, (1) (1 sin(1)), (0) 0, (1) (cos(1) sin(1) 1), (0) 1.y y e y y e y                     (34) 

Haar coefficient vector of Type 1 BVP for J=4 is 11 2 2
[ , ,..., ]Ja a a  [10.8, 3.24,..., 0.91].    Approximate 

solution y(x) is found using equations (14-16) and compared with the exact solution ( ) (1 sin( ))xy x e x    in 

Table 3. 

Example 4: Consider the boundary value problem [9], 
(5) ( ) ( ) (15 10 ) , [0,1],xy x y x x e x                                               (35) 

with boundary conditions: 

 (1) (1) (3)(0) 0, (1) 0, (0) 1, (1) , (0) 0.y y y y e y                                                 (36) 

11 2 2
[ , ,..., ] [ 35.4,12.73, ...,5.16]Ja a a    are Haar coefficients of Type 2 BVP for J=6. These findings, 

equations (14), (17) & (18) are approximated the solution. The comparison of obtained solution and analytic 

solution (1 ) xx x e  are tabulated in Table 4. 

6. Results and discussion 

Absolute errors obtained by HWCM are compared to other existing techniques, exhibit the results that 

as the level of resolution increases absolute error curves of HWCM are goes closer to x-axis (Where the 
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absolute errors are zero). The comparison of approximate solution, exact solution at collocations points with 

J=3,4,5 & 6 for Examples 1, 2, 3 & 4 have been demonstrated in Figures 1, 3, 5, 7 respectively. Here in 

each figure approximate solution coincided with the exact solution, this assures the exactness of HWCM 

results. Absolute errors obtained by the Examples 1, 2, 3 & 4 are drawn in Figures 2, 4, 6& 8 for various 

resolutions. In all these figures as the level of resolution increased absolute errors tended towards x axis.  

These graphs concluded that decreasing of absolute errors show the accuracy of the HWCM solutions. To 

check the efficiency of the method quantitatively 6 Tables are designed. In Tables 1-4 approximate solution, 

exact solution, absolute errors are at the grid points 0.1, 0.2,…, 0.9 with J=4, 5, 4 & 6 for Example 1-4 are 

listed. Each tables explored the comparison of exact and Haar solution. By this observation concluded that 

approximate solutions are much closed to analytic solutions. In Table 5 Maximum absolute errors obtained 

by Examples 1, 2& 3 for different values of J are compared to non polynomial spline method. This table 

ensures that maximum absolute errors of HWCM are very less compared to NPSM. Accuracy of solutions 

obtained for Example 4 is examined in Table 6. HWCM has given least maximum absolute errors for J=7, 8, 

9 compared to OSPM and NPSS methods. Tables 1-6 depict as accuracy of the wavelet solutions are less 

satisfactory for small value of J; in case increases occur in the resolution better accuracy can be achieved. 

 
Fig.1. Comparison of exact and Haar solution of Example 1 for J=4 

 
Fig.2. Absolute errors for various resolutions of Example 1 
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Fig.3. Comparison of Exact and Haar Solution for Example 2 with J=3 

 

Fig.4. Absolute errors by HWCM with J=4, 5, 6&7 for Example 2 

 

Fig.5. Comparison of Exact and Haar Solution for Example 3 with J=4 
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Fig.6. Absolute errors by HWCM with J=4, 5, 6&7 for Example 3 

 

Fig.7. Comparison of Exact and Haar Solution for Example 4 with J=5 

 

Fig.8. Absolute errors by HWCM with J=4, 5, 6&7 for Example 4 
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   Table 1. Comparison of exact and Haar solution of Example 1 

X 
Exact 

Solution 

Approximate 

Solution 

Absolute 

error 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

4.4775 

3.9203 

3.3437 

2.7632 

2.1940 

1.6507 

1.1473 

0.6967 

0.3108 

4.4775 

3.9203 

3.3437 

2.7632 

2.1940 

1.6507 

1.1473 

0.6967 

0.3108 

1.5209E-09 

2.2999E-08 

1.0744E-07 

3.0993E-07 

6.8349E-07 

1.2653E-06 

2.0633E-06 

 3.0438E-06 

4.1196E-06 

Table 2. Comparison of exact and Haar Solution of Example 2 

X 
Exact 

Solution 

Approximate 

Solution 

Absolute 

error 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0948 

1.1787 

1.2509 

1.3105 

1.3570 

1.3900 

1.4091 

1.4141 

1.4049 

1.0948 

1.1787 

1.2509 

1.3105 

1.3570 

1.3900 

1.4091 

1.4141 

1.4049 

4.0037E-11 

2.4506E-10 

6.1035E-10 

1.0218E-09 

1.3289E-09 

1.4058E-09 

1.1980E-09 

7.5618E-10 

2.5531E-10 

 

Table 3. Comparison of exact and Haar Solution of Example 3 

X 
Exact 

Solution 

Approximate 

Solution 

Absolute 

error 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.9948 

0.9787 

0.9509 

0.9109 

0.8583 

0.7933 

0.7165 

0.6290 

0.5329 

0.9948 

0.9787 

0.9509 

0.9109 

0.8583 

0.7933 

0.7165 

0.6290 

0.5329 

2.0804E-09 

1.3121E-08 

3.3510E-08 

5.7450E-08 

7.6478E-08 

8.2772E-08 

7.2138E-08 

4.6544E-08 

1.6055E-08 

Table 4. Comparison of exact and Haar Solution of Example 4 

X 
Exact 

Solution 

Approximate 

Solution 

Absolute 

error 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.0995 

0.1954 

0.2835 

0.3580 

0.4122 

0.4373 

0.4229 

0.3561 

0.2214 

0.0995 

0.1954 

0.2835 

0.3580 

0.4122 

0.4373 

0.4229 

0.3561 

0.2214 

5.8563E-09 

2.1784E-08 

4.3417E-08 

6.4741E-08 

7.9354E-08 

8.1906E-08 

6.9733E-08 

4.4745E-08 

1.5570E-08 
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Table 5. Comparison of Maximum absolute errors
 

Example 

No. 

HWCM Non-Polynomial Spline(NPS)[5]  

     h=1/10     h=1/20 

1 9.46E—08 - - 

2 5.52E—12 1.63E--07 1.86E--08 

3 8.13E—11 4.79E--06 1.05E--06 

Table 6.  Maximum absolute errors of HWCM compared with OSPM and [8] 

Example 

No. 
OSPM[9] HWCM NPSS [8] 

 1 0 
 

  

2

1

240
 

 J=7,8,9. - 

4 

3.76E-09 

1.80E-11 

3.17E-11 

2.85E-05 

7.80E-06 

1.99E-06 

2.19E-10 

5.46E-12 

3.47E-12 

1.46E-04 

7.13E-06 

4.75E-07 

7. Conclusion 

The present method has been tested on initial and boundary value problems (Type 1 and Type2) of 

induction motor. The order of convergence for fifth order ODEs is found. The approximate solutions 

obtained by HWCM are in good agreement with exact solutions. We concluded from graphs and tables that 

the numerical results obtained by HWCM are better than other existing methods. Analyzing the numerical 

studies we observed that the proposed method gives more precise results by increasing level of resolution. So 

that the method is efficient and reasonable for induction motor problems. 
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