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Abstract. In this paper we propose and analyze nonlinear mixed-effects models for longitudinal data, 

obtaining robust maximum likelihood estimates for the parameters by introducing Huber’s function in the 

log-likelihood function. Furthermore, the test for outliers in the model based on robust estimation is 

investigated through generalized Cook’s distance. The obtained results are illustrated by plasma 

concentrations data presented in Davidian and Giltiman, which was analyzed under the non-robust situation. 
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1. Introduction  

Nonlinear mixed models can model mechanistic relationships between independent and dependent 

variables and can estimate more physically interpretable parameters (Pinheiro and Bates 2000), which are 

important to the analysis of longitudinal data, multi-level data and repeated survey data and widely used in 

the field of economics, bio-pharmaceuticals, agriculture. Recently, some different nonlinear mixed effects 

models and inference procedures have been proposed. Russo et al. (2009) proposed nonlinear elliptical 

models for longitudinal data and presented diagnostic results based on residual distances and local influence 

(Cook, 1986 and 1987). Wei and Zhong (2001) focused on influence analysis in nonlinear models with 

random effects.  

In standard analysis of data well-modeled by a nonlinear mixed model, an outlying observation can 

greatly distort parameter estimates and subsequent standard errors. Consequently, inferences about 

parameters are misleading. Then, a robust procedure is needed for accurate results in the presence of outliers. 

M-estimation is the most widely used robust estimation method, which was firstly introduced in Huber’s 

article (1981) on regression. Mancini et al. (2005) and Muler and Yohia (2008) proposed a robust M-

estimator that assigns a much lower weight to outliers than traditional maximum likelihood estimators does. 

Pinheiro et al. (2001) and Staudenmayer et al. (2009) studied robust estimation techniques in which both 

random effects and errors have multivariate Student-t distributions. While, less alternatives have been 

studied for outlier accommodation in the context of nonlinear mixed-effects models. Yeap and Davidian 

(2001), who proposed a two-stage robust estimation in nonlinear mixed-effects models when outliers are 

presented, is one of the few references that address this case. Meza et al. (2012) presented an extension of a 

Gaussian nonlinear mixed-effects model using heavy-tailed multivariate distributions for both random effects 

and residual errors. James et al. (2015) proposed an outlier robust method based on linearization to estimate 

fixed effects parameters and variance components in nonlinear mixed model. However, little attention has 

been paid to the influence diagnostic for nonlinear mixed models in the current literature. In this article, we 

introduce a robust method by utilizing a robust version of the log-likelihood for the nonlinear mixed model 

and investigate the test for outliers in the model based on robust estimation by generalized Cook’s distance, 

extending and expanding the studies of Gill (2000) and James et al. (2015). Our results show that the 

generalized Cook’s distance based on robust estimation can successfully detect the masking effects that 

appear in the data set.  

The rest of the article is organized as follows. Section 2 introduces the nonlinear mixed effects model 

discussed in this paper and uses Fisher scoring method to get M-estimation of parameters. And the 

asymptotic properties is also established. In Section 3, we investigate the test for outliers in nonlinear model 

based on robust estimates. In Section 4, as an illustration, we apply the proposed method to analyze an 

observational data set. Finally, some conclusions are given and possible future work is discussed in Section 5. 
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2. Model and robust estimation  

Assume that response measurements are collected on N subjects and the k-th subject being observed on 

nk time points, thus 
1

N

kk
M n


 is the total number of measurements. In the matrix notation, the model for 

measurements from subject k is  

   ( , ) , 1,2, ,k k k k ky f X C e k N     ,                                          (2.1) 

where 1( , , )
k

T

k k kny y y  is a vector of length nk containing observable response variable from subject k; 

( , )f   is a known second order differentiable nonlinear function of the regression vector  , which is a 

vector of q unknown but fixed parameters with known design matrix kX , and 1( , , )
k

T

k k knX x x ; kC  is 

the kn r  design matrix for the random effects of subject k, k  is a 1r  vector of random effects assumed 

to be sampled from a multivariate normal distribution with mean 0 and covariance matrix 2  . 

1( , , )
k

T

k k kne e e is an 1kn   unobservable random error and 
2~ (0, )k ke N   . It is also assumed that 

k  and ke  are independent from each other. Then, 
2 2 2( ) T

k k k k kcov y C C        .  

Let   denote the vector of unknown parameters in k , and the log-likelihood for the nonlinear mixed 

model is  

  
2

1 1

1 1 1
( , | ) tan log log

2 2 2

N N
T

k k k

k k

l y cons t M    
 

      ,                         (2.2) 

which is obtained from the marginal model from (2.1) (Russo et al., 2009), where 
1 1/2 ( ( , ))k k k ky f X      . Note that the last term of (2.2) is a half sum of squares and grows quickly.      

Following the M-estimation theory expressed in Huber (1981), the log-likelihood function l is robustified by 

replacing it with a function that increases much slower.  

In this paper, Huber   function is chosen to bound the influence of outlying observations on the 

estimation, which is defined by  

2

2

1
| |

2
( )

1
| | | |

2

if c

c c if c

 

 

 




 
  


, 

where c is the Huber tuning constant and usually [0.7,2]c , here c=1.345 (Ripley, 2004). The first 

derivative of ( )   with respect to  , is given by  

| |
( ) ( ) /

( ) | |

if c

csign if c

 
    

 


    


. 

Therefore, the robustified version of (2.2) is given by  

2

1 1

1 1 1

1 1
( , | ) tan log log ( )

2 2

knN N

k jk

k k j

y cons t M       
  

      ,                 (2.3) 

where 1 ( ( )) (| | )E Pr c       is the consistency correction factor and is needed to make the 

estimating equations have zero expectation.  

Then, we can obtain robust maximum likelihood estimation (RMLE) through Fisher scoring method 

(Gill, 2000 and James et al., 2015) based on (2.3). Note that the robust maximum likelihood estimation 

becomes the classical maximum likelihood estimation as c  approaches infinity in Huber function. Now we 

study the asymptotic properties of RMLE. Let 2( , , )T T T    , by Domowitz and White (1982), we 

consider that the RMLE N  of   is obtained by maximizing an objective function in the form 

1

1
( , ) ( , )

N

N i

i

G y g y
N

 


   , 

and the estimating equation for   is as follows 
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'

1

1
( , ) ( , ) 0

N

N i

i

G y g y
N

 


  , 

where ( , ) ( , ) /i ig y g y      . Consider that 0  is obtained by maximizing the objective function 

( ) [ ( , )]N NG E G y  . 

So we have
'

0[ ( , )] 0NE G y   . Now using the mean value theorem, we get 

                ' ' "

0 0( , ) ( , ) ( , )( )N NN N NG y G y G y                                           (2.4) 

where
0(1 ) ,0 1N            . Because ' ( , ) 0NNG y   , (2.4) gives 

" 1 '

0 0( ) [ ( , )] ( ( , ))N N NN G y NG y      . 

Property 2.1 shows that the M-estimation for   has the same properties as MLE.  

Property 2.1  Under some assumptions (Domowitz and White, 1982), according to Sanjoy (2004), the 

following consistency and asymptotic normality property can be got  

0 ( ) . .Na a s   

1

0 0( ) ( ) ( , ( ))N Nb N N    0 J  

where 1 1 1

0 0 0( ) , ( ), ( ) [ ( , )], [ ( , )]N N N N N N N N N NM Q M M G G E G y Q var NG y              J , Domowitz and 

White (1982) gives the detailed proof. 

3. Case deletion model and generalized Cook’s distance 

The data deletion model is one of the most basic statistical diagnosis model. The basic method 

commonly used to study outliers or strong influence points is to compare the difference of the estimator 

between the data point deleted before and after. For nonlinear mixed effects model of longitudinal data, there 

are two types of data deletion: one is to delete an observation value of an individual, that is ( , )ij ijy x , and the 

other is to delete the whole set of observations of an individual, i.e. ( , )T T

i iy x . For convenience, this paper 

only discusses the second case.  

When the whole data set of the i-th individual is deleted, model (2.1) becomes  

                    ( , ) ,j j j j jy f X C e j i     .                                              (3.1) 

The robustified log-likelihood function is given by  

2 2

[ ] 1 1

1, 1, 1

1 1
( , , ) ( ) | | ( )

2 2

knN N

i i k jk

k k i k k i j

constant M n log log        
    

        ,     (3.2) 

where the subscript [i] denotes the deletion of observations of the i-th individual. Let  [ ]i  be the robust 

estimate of   after deleting the i-th individual. The difference between [ ]i  and   can be compared to 

measure the influence of the i-th individual on  . If the difference is large, the i-th individual may be a 

strong influence individual. According to Cook and Weisberg (1982), define the generalized Cook’s distance 

to measure  - [ ]i .  

Definition 3.1 The generalized Cook’s distance based on the Fisher information matrix of   for 

model (2.1) and its case deletion model (3.1) is given by  

                

2

[ ] [ ]( ) ( )T
i ii T

GC E




   

 

 
    

  
.                                           (3.3) 

If the value of generalized Cook’s distance corresponding to the i-th individual iGC  is larger than other 

values, the i-th individual is considered to be a strong influential individual. 
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4. An illustrative example 

Plasma drug penetration data was collected by the following experiment: Firstly, six volunteers were 

injected the same dose of a drug through veins. Then, the drug concentration in their plasma was measured at 

eleven times within eight hours. Davidian and Giltiman (1995) applied the following double exponential 

model to describe the data:  
31 2 4exp( ) exp( ) , 1,2, ,6; 1,2, ,11ij ij ij i ijy e e x e e x e i j

           , 

where ijy  denotes the drug concentration of the i-th volunteer at the j-th time; ijx is the time interval of the i-

th volunteer measure the j-th time drug concentration; i  is the drug effect of the i-th volunteer and 

2(0, )i N   ; ije  is the random error that independent with i  and we suppose 
2(0, )ije N  . Design 

matrix 

(0.25,0.50,0.75,1.00,1.25,2.00,3.00,iX  4.00,5.00,6.00,8.00)T . 

First, we get the RMLE of parameters by the method we proposed in the paper. The results are shown in 

Table 1. 

Table 1.  RMLE of parameters 

Parameters   1  2  3  4  
2  

   

RMLE  1.3419  0.8294  -0.4201 -0.9637 0.0369 0.6491   

MSE  0.1902 0.1837  0.2436  0.2010  0.2568  0.3741  

Now calculate the generalized Cook’s distance for each individual using formula 3.3. Consider the 

scatter plot of the generalized Cook’s distance as shown in Figure 1.  

The generalized Cook’s distance is calculated based on RMLE in Figure 1(a) and based on MLE in 

Figure 1(b). As can be seen from the two figures, the generalized Cook’s distance for the third individual is 

the largest, followed by the forth individual. So it can be considered that the third individual is a strong 

influential individual. In addition, we can see from Figure 1(a) and 1(b) that the generalized Cook’s distance 

for the forth individual is larger in Figure 1(a). Therefore, the generalized Cook’s distance presented in the 

paper based on M-estimation may identify potential outliers, which could overcome the masking 

phenomenon. 

  

Figure 1.  generalized Cook’s distance 
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5. Conclusion 

Nonlinear mixed effects models are very useful statistical tools in analyzing nonlinear data with random 

effects. However, when there are outliers in the data, current nonrobust estimation methods may produce 

misleading results, so a robust method is needed. In this article, the log-likelihood function of the nonlinear 

mixed effects model is altered by incorporating an appropriate loss function,  , of the residuals. Fisher 

scoring method is applied to get M-estimation of the parameters for the means model and for the variance 

components. Then, generalized Cook’s distance based on M-estimation is presented in the paper. Here Huber 
  function is used to bound the influence of outlying observations. An alternative function is the one 

suggested by Andrews et al.(1972), called the Bisquare function, is  
32

2

2

1 ( ) 1 | |
6

( )

| |
6

c
if c

c

c
if c




 



   
           






 , 

where c is the tuning constant. The first derivative of ( )   with respect to  , denoted ( ) ( ) /       , 

is given by 
2

2

1 |
)

0 | |

 |
(

if c
c

if c


 

 



             




. 

We can also use perturbation diagnostics based on M-estimation to overcome the masking phenomenon 

when identifying potential outliers, such as mean shift perturbation, case weights perturbation, perturbation 

of covariate in random effects and so on. The key point of all the above perturbations is to find F . 
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