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Abstract. In this manuscript, finite-time burst synchronization of time-delay neuron system is investigated 

for two cases. In one case, parameters are known. In another case, parameters are unknown and some 

parameters are disturbed by periodic signal. The time to gain burst synchronization is derived and a factor 

affecting the synchronization time is given via theoretical analysis. The relationship between the time and the 

factor is described. Finally, simulation results are given to verify the effectiveness of the proposed methods. 
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1. Introduction  

In the past decades, synchronization of chaotic system has attracted more and more attention of 

researchers due to its powerful applications in many areas [1-3], such as secure communication, chemical 

reactions, biological systems and mechanical systems. Many kinds of synchronization have been investigated, 

such as complete synchronization [4], lag synchronization [5], generalized synchronization [6], phase 

synchronization [7], anti-synchronization [8], cluster synchronization [9], etc. For this, various effective 

methods have been proposed to synchronize chaotic systems, e.g., sliding mode control [10], back stepping 

method [11], adaptive control [12], observer-based control [13], nonlinear control [14], control Lyapunov 

function method [15], and so on. 

With further research on synchronization, more and more people have realized that the time to achieve 

synchronization is very important in real applications. For this reason, many methods have been introduced 

to get faster convergence speed, among which finite-time control is an effective technique. Since finite-time 

synchronization means the optimality in convergence time, many contributions have been made to it [16-21]. 

Meanwhile, in real systems, time-delay is often inevitable. So it is necessary to investigate the finite-time 

synchronization of time delay system.  

Motivated by potential applications of synchronization, many researchers have been engaged in the 

synchronization of neuron system. Studies [22-26] have shown that synchronization is an important 

phenomenon in information processing of neurons and neurons engage in various activities, among which, 

burst is one pattern consisting of the active phase and silent phase. Burst synchronization [27] naturally 

refers to the introduction of a temporal relationship between the bursts produced by two or more neurons. It 

is typically used to refer to a temporal relationship between active phase onset or offset times across neurons. 

This form of synchronization can be observed, when either excitatory synaptic coupling or diffusive coupling 

is introduced between a pair of model respiratory neurons [28, 29]. Clinical evidences suggest that burst 

synchronization plays an important role in some pathology, such as Parkinson’s disease, essential tremor, 

and epilepsies [30]. Therefore, controlling this synchronization has a practical importance for undesirable 

neuronal rhythms [31, 32]. In addition, in real neuron system, time-delay always exists when signals are 

communicated among neurons, even in the same neuron. So it is necessary to investigate the finite-time burst 

synchronization of the neuron system with time-delay. 

Based on above, the main contribution of this paper is to investigate the finite-time burst 

synchronization of time-delay neuron system with various parameters. The rest parts of this paper are 

arranged as follows. Some preliminaries are given in Section 2. In Section 3, the finite-time burst 

synchronization of time-delay neuron system is discussed for two cases. One is with known parameters and 

another is with periodic perturbation parameters. Section 4 gives numerical simulations to verify the 

effectiveness of the proposed method. Some conclusions are reached in Section 5. 

 



Weipeng Lv  et al.: Finite-time burst synchronization of time-delay neural system with parameters disturbed by periodic signal 

 

JIC email for contribution: editor@jic.org.uk 

152 

2. Preliminaries 

 
Definition 1. Considering two chaotic systems as follows: 

( )x f x , ( )y g y                                                                           (1) 

Where x,y are two n-dimensional state vectors. f , : n ng R R  are vector-valued functions. If there exists a positive 

constant T  such that  

lim 0
t T

x y


  , 

and 0x y   when t T , then it is said that the two systems of (1) can achieve finite-time synchronization. 

Lemma 1[33]. Assume that a continuous, positive-definite function ( )V t  satisfies the following differential inequality 

( ) ( )V t cV t


  , 0
t t  , 0

( ) 0V t  ,                                                              (2) 

where 0c  , 0 1   are all constants. Then for any given 0t , ( )V t  satisfies following inequality: 

1 1

0 0
( ) ( ) (1 )( )V t V t c t t

 


 
    , 0 1

t t t  ,                                                    (3) 

and  
( ) 0V t  , 1

t t                                                                                     (4) 

with 1t  given by  

1

0

1 0

( )

(1 )

V t
t t

c







 


.                                                                                     (5) 

Lemma 2 [34]. Suppose 0 1r  , a , b  are all positive numbers, then the inequality  

( )
r r r

a b a b    

is quite straightforward . 

3. Finite-time burst synchronization of neuron system with time-delay 

3.1 System description  

In this section, the neuron system with time-delay is considered as following Hindmarsh -Rose (HR) system:  
2 3

( )
ext

x ax bx y z t I      , 

2
y c dx y   , 

( ( ) )z r S x k z   ,                                                                    (6) 

where 0   is the time-delay. x , y and z represent the membrane potential of the neuron, the recovery variable, 

and the adaptation current, respectively. a , b , c , d , r , S , k  are real constants. ext
I  is an external influence on the 

system. When  =0, model (6) is a mathematical representation of the firing behavior of neurons proposed by 

Hindmarsh and Rose [35]. In Eq. (6), time delay emerges in the third variable z , which is thought as adaptation 

current. The electric synaptic exists in many neurons, and its effect is often described by an additional current with time 

delay [36, 37]. With various ext
I , model (6) can show different dynamical behaviors. For example, if 1  and other 

parameters are chosen as a =3.0, b =1.0, c =1.0, d =5.0, r =0.006, S =4.0, k =1.6, system (6) can show regular 

bursting for 2.6
ext

I   (Fig.1) and chaotic bursting for 3.1
ext

I  (Fig.2), respectively.   
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Fig.1 Regular bursting of system (6) for = 2.6. (a) Phase portrait, (b) Time series 

 

Fig.2 Chaotic bursting of system (6) for = 3.1. (a) Phase portrait, (b) Time series 

For simplicity, let rS p , rSk q , system (6) can be rewritten as  

2 3
( )

ext
x ax bx y z t I      , 

2
y c dx y   , 

  z px q rz   .                                                                             (7) 

To realize the finite-time burst synchronization of HR system, the drive system is considered as 
2 3

1 1 1 1 1
( )

ext
x ax bx y z t I      , 

2

1 1 1
y c dx y   , 

1 1 1
z px q rz   ,                                                                           (8) 

and the controlled response system is taken as    
2 3

2 2 2 2 2 1
( )

ext
x ax bx y z t I u       , 

2

2 2 2 2
y c dx y u    , 

2 2 2 3
z px q rz u    .                                                                         (9) 

To obtain the main results, following Assumption 1 is put forward.  
Assumption 1(A1). Due to the bounded trajectories of chaotic system, there is a positive constant M  satisfying 

i
x M , i

y M , i
z M ( 1,2)i  . 

Let 1 2 1
e x x  , 2 2 1

e y y  , 3 2 1
e z z  , the error system of (9) and (8) can be obtained as 

2 2

1 1 2 1 1 2 2 1 1 2 3 1
( ) ( + ) ( )e ae x x be x x x x e e t u        , 

2 1 2 1 2 2
( )e de x x e u     , 

ext
I

ext
I
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3 1 3 3
e pe re u   .                                                                                 (10) 

Next, controllers 
i

u (i=1, 2, 3) are to be constructed to make the error system (10) achieve finite-time stability, that 

is, the finite-time burst synchronization of systems (9) and (8) can be realized. For this, two cases are to be discussed as 

follows. 

3.1 Finite-time burst synchronization of time-delay HR system with known parameters 

In this section, the parameters of HR system are considered to be known. For complete synchronization, you may 

only need one controller to realize it. Generally speaking, with enhanced synchronization, it is stricter in the number and 

expression of controller. It means that the condition of controller required for finite-time burst synchronization is 

harsher than for complete synchronization. Therefore, in this section, we take three controllers and the main result is 

given in Theorem 1. 

Theorem 1 The finite-time burst synchronization of systems (8) and (9) can be achieved if the controllers are chosen as 

1 1 1 1 3 2
( )u M e e e t e


      , 

2 2 2
u e e


  , 

3 3 3
u re e


  , where 

2

1
2 3M aM bM  , /n m   is a proper 

rational number. M  is the constant in A1. m , n  are positive odd integers satisfying m n .  

Proof. Firstly, substitute 1u  into the first equation of (10), and we can get  

2 2

1 1 1 2 1 1 2 1 2 2 3 1 1 1 3 2
( ) ( ) ( ) ( )e ae x x be x x x x e e t M e e e t e


                  

2

1 1 1
(2 3 )Ma M b M e e


    .                                              (11) 

 Let 
2

1 1

1
=

2
V e , then we have 

 
2 2 1

1 1 1 1 1 1
( 2 3 )V e e e M Ma M b e

 
       

1 1 1 1

1 22 2 2 2
1 1 1

1
2 ( ) 2

2
e e V

   



   


      . 

According to Lemma 1, system (11) is finite-time stable. It means that there is a constant 

1

1 1
2 2

0 1 0= 2 ( ) / (2 (1 )) 0T t V t
 


 

   , such that 1 0e   provided that 1
t T .Then, the last two equations of (10) 

become  

2 2 2
e e u   ,  

  
3 3 3

e re u   .                                                                           (12) 

Secondly，substitute 2
u , 3

u  into (12), and it can be obtained that 

2 2
e e


  , 

3 3
e e


  .                                                                                 (13) 

Let 
2 2

2 2 3

1
= ( )

2
V e e , make use of Lemma 2, and it can be reached that 

1 1 1 1

1 1 2 22 2 2 2
2 2 2 3 3 2 3 2 3

1 1
2 ( ) 2 ( )

2 2
V e e e e e e e e

   

 

   

 
         

1 1 1

2 22 2 2
2 3

1 1
2 (( ) ( ) )

2 2
e e

    

  

1 1

2 22 2
2 3

1 1
2 ( )

2 2
e e

  

  
1 1

2 2
2

2 ( )V

  

  .  

From Lemma 1, system (13) is finite-time stable. That is to say, there exists a constant  
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2 1

1 1

2 2
0 2 0= 2 ( ) / (2 (1 ))T Tt V t

 


 

    

satisfying
2

0e  ,
3

0e   after a finite- time 2
T . 

According to Definition1, the finite-time burst synchronization of systems (8) and (9) can be realized if the 

controllers are chosen as mentioned in Theorem 1. 

Remark1. For given 0t , derivate 
1

1 1
2 2

0 1 0= 2 ( )/(2 (1 ))T t V t
 


 

   of  , it can be gotten that 

1

1 1 1
22 2 2

1 0 1 0= ( )[ln( ( )) 2 ((1 ) ln 2 1)] (2 (1 ))T V t V t
  

 
  

     . Analyzing the nature of 
1

T  by using Matlab 

Program, it’s known that 
1

0T  for given 0t and 0< 1  . It means that the time 
1

T  required to go stable become 

longer with  increasing. For 
2

1 1
2 2

0 2 0= 2 ( ) / (2 (1 ))T t V t
 


 

  , the same result can be gained. This result 

suggests that smaller value of  (0< 1)  is helpful for achieving finite-time burst synchronization of time-delay 

neuron system with known parameters. 

3.2 Finite-time burst synchronization of time-delay HR system for parameters with periodic perturbation  

In this section, some parameters are with periodic perturbations. Without loss of generality, it is thought that two 

parameters are provided with periodic perturbations. System (8) is also considered as the drive system. And the time-

delay HR system with periodic perturbation parameters is supposed as 
2 3

2 1 2 2 2 2 2
(1 ) (1 ) ( )

ext
x a x b x y z t I          , 

2

2 2 2
y c dx y   , 

2 2 2
z px q rz   .                                                                                    (14) 

The corresponding controlled response system is    
2 3

2 1 2 2 2 2 2 1(1 ) (1 ) ( ) +
ext

x a x b x y z t I v          , 

2

2 2 2 2+y c dx y v   , 

2 2 2 3+z px q rz v   ,                                                                                   (15) 

where 1v , 2v , 3v  are controllers to be determined, 
1
 , 2

  are bounded periodic perturbations satisfying 1 1L  , 2 2L 
 

and 1L , 2L are positive constants . 

  For systems (8) and (15), let 1 2 1
e x x  , 2 2 1

e y y  , 3 2 1
e z z  , and the main result can be given in 

following Theorem 2. 

Theorem 2 The finite-time burst synchronization of the drive system (8) and the response system (15) can be 

achieved if the controllers are taken as 
2 3

1 1 1 2 2 2 2 3 11 ( )v M e L x L x e e t e


        , 

2 2 2
v e e


  , 

3 3 3
v e er 
  ,                                                    (16)  

where 1M and   are defined as the same as in Theorem 1, 1L , 2L are positive constants satisfying 1 1L  , 2 2L  . 

Proof. Subtract (8) from (15), and the error system can be arrived as following: 
2 2 2 3

1 2 1 1 1 2 2 2 1 1 1 2 2 2 3 1( ) ( ) ( )e a x x e x b x x x x e x e e t v             , 

2 2 1 1 2 2
( )e d x x e e v    , 

           3 1 3 3
e pe re v   .                                                                            (17)  
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At first, let 
2

1 1

1

2
W e , and we have 

2 2 2 3

1 1 1 1 2 1 1 1 2 2 2 1 1 1 2 2 2 3 1[ ( ) ( ) ( ) ]W e e e a x x e x b x x x x e x e e t v               

             
2 2 3

1 1 1 2 2 2 2 3 1
[(2 3 ( ) ])e aM bM e L x L x e e t v                

2

1 1 11[(2 3 ) ]e aM bM M e e


     
1 1 1 1

1 22 2 2 2
1 1 1

1
2 ( ) 2

2
e e W

   



   


      . 

According to Lemma 1, the first Equation of system (17) is finite-time stable with 
1

v  in (16). In another word, there 

exists a constant 
13

1 1
2 2

0 02 ( ) / (2 (1 )) 0T t W t
 


 

     satisfying 1
0e   if 

3
t T . Under this condition, the last 

two equations of (17) become 

2 2 2
e e v   , 

3 3 3
e re v   .                                                                            (18) 

Next, let 
2 2

2 2 3

1
( )

2
W e e  , applying Lemma 2, and it can be obtained that   

2 2 2 3 3
W e e e e 

2 2 2 3 3 3
[ ] [ ]e e v e re v     

1 1

2 3e e      

1 1 1

2 22 2 2
2 3

1 1
2 (( ) ( ) )

2 2
e e

    

  

1 1 1 1

2 22 2 2 2
2 3 2

1 1
2 ( ) 2 ( )

2 2
e e W

      

     . 

According to Lemma 1, there exists a constant 
4 3

1 1
2 2

0 2 0= 2 ( ) / (2 (1 ))T Tt W t
 


 

   , such that 
2

0e  , 
3

0e  if 

4
t T .  

In the light of Definition1, system (17) is finite-time stable, that is to say the finite-time burst synchronization of 

systems (8) and (15) can be realized if controllers 
1

v , 2
v  and 

3
v are chosen as in (16).  

Remark2. By the similar analysis as 
1

T , 2
T , it’s known that the time 

3
T , 4

T  also become larger with  increasing. And 

smaller value of   is benefit for achieving finite-time burst synchronization of systems (8) and (15). 

 

4. Numerical simulations  
In this section, some numerical simulations are given to demonstrate the effectiveness of the theoretical results. In 

the simulations, the time delay is assumed as 1  . The parameters of HR system are chosen as a =3.0, b =1.0, c =1.0, 

d =5.0, r =0.006, S =4.0, k =1.6 and extI =3.1, with which the HR system is chaotic bursting. The initial values of the 

drive system and the response system are set as 
1 1 1

( (0), (0), (0))x y z  (0.3, 0.2, 0.1) and 
2 2 2

( (0), (0), (0))x y z  (0.6, 

0.7, 0.3), respectively. Fig.3 shows the dynamical behavior of system (10) without controllers, from which it is known 

that error system (10) is be unstable, e.g., the burst synchronization of systems (9) and (8) can’t be achieved.  
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  Fig.3 Dynamical behavior of error system (10) without controller  

To verify the results in Theorem 1 and Theorem 2, simulations are given by constructing appropriate controllers 

and the finite-time burst synchronizations of HR systems in two cases are realized, which can be shown in Fig.4-Fig.9. 

In order to investigate the impact of parameter 


on the burst synchronization time, 


is taken as 0.5, 0.75, 0.90, 

respectively. 

 

 

Fig.4 Dynamics of  in system (10) with controller in Theorem 1 for different   

 

Fig.5 Dynamics of  in system (10) with controller in Theorem 1 for different   

Firstly, when parameters are known and the controllers are chosen as in Theorem 1, the dynamics of error system 

(10) are pictured in Figs.4-6 with different values of 


, from which, it can be seen that the finite-time burst 

synchronization of systems (9) and (8) can be obtained. Furthermore, the time to realize burst synchronization becomes 

larger with 


increasing. 

1
e 

2
e 
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Fig.6 Dynamics of  in system (10) with controller in Theorem 1 for different  

 

Fig.7 Dynamics of  in system (17) with controller in (16) for different  

 

     Fig.8 Dynamics of  in system (17) with controller in (16) for different   

 

Fig.9 Dynamics of  in system (17) with controller in (16) for different          

Secondly, when two parameters are with periodic perturbations, e.g., the periodic perturbations are taken as 

1=0.1cos(t) , 2 0.1sin( )t  and the controllers are taken as in (16). The dynamics of error system (17) are drawn in 

Figs.7-9, from which, it is known that when two parameters are with periodic perturbations, the finite-time burst 

3
e 

1
e 

2
e 

3
e 
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synchronization can also be achieved. In addition, we can see that more time is required to realize the finite-time burst 

synchronization between system (8) and (15) with larger  .  

5. Conclusion 

In this paper, based on Lyapunov stability theory, schemes are proposed to realize the finite-time burst 

synchronization of time-delay neural system both for known parameters and for parameters with periodic perturbations. 

At the same time, a factor affecting the finite-time burst synchronization is obtained and the relationship between them 

is analyzed. Because time-delay and periodic perturbation parameters are taken into account in the considered HR 

system, the proposed scheme is attractive and practical in controlling the dynamic behavior of neural network. The 

research result gives a piece of advice to shorten the synchronization time of time-delay neuron network with known or 

unknown parameters under certain conditions. It may be helpful for treating pathologies.  
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