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Abstract. This paper presents, Daubechies wavelet based full approximation scheme (DWFAS) for the 
numerical solution of Burgers’ equation, which is nonlinear partial differential equation (PDE) arising in 
fluid dynamics using Daubechies wavelet intergrid operartors. The numerical solutions obtained are 
compared with existing numerical methods and exact solution. Some of the test problems are presented to 
demonstrate that DWFAS has fast convergence in low computational time and is very effective, convenient 
and quite accurate to systems of PDEs. 
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1. Introduction  
Burgers’ equation has attracted much attention. Solving this equation has been an interesting task for 

mathematicians. This equation has been found to describe various kinds of phenomena such as a 
mathematical model of turbulence and approximate theory of flow through a shock wave traveling in a 
viscous fluid [1].  Consider one–dimensional non-linear PDE with the following initial and boundary 
conditions: 

       2
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                                         (1.1) 

Initial condition:      
           , 0 , 0 1u x f x x                                                            (1.2) 

Boundary conditions:   
       0 , , 1 , , 0u t g t u t h t t                                                   (1.3) 

is known as Burgers’ equation. Burgers’ model of turbulence is a very important fluid dynamics model and 
the study of this model and the theory of shock waves have been considered by many authors both for 
conceptual understanding of a class of physical flows and for testing various numerical methods. The 
distinctive feature of Eq. (1.1) is that it is the simplest mathematical formulation of the competition between 
non-linear advection and the viscous diffusion. It contains the simplest form of non-linear advection term  
and dissipation term   where ‘ ’ is the viscosity coefficient for formulating the physical phenomena of wave 
motion and thus determines the behavior of the solution. In 1915, such type of equation is introduced by 
Bateman [2] and proposed the steady-state solution of the problem.  Burgers [3] introduced this equation in 
1948, to capture some features of turbulent fluid in a channel caused by the interaction of the opposite effects 
of convection and diffusion, therefore it is referred as ‘‘Burgers’ equation’’. The structure of Burgers’ 
equation is roughly similar to that of Navier–Stokes equations due to the presence of the non-linear 
convection term and the occurrence of the diffusion term with viscosity coefficient. So, this equation can be 
considered as a simplified form of the Navier–Stokes equations and also it is the simplest model of nonlinear 
partial differential equation for diffusive waves in fluid dynamics. The study of the general properties of 
Burgers’ equation has attracted attention of scientific community due to its applications in many physical 
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problems including one-dimensional sound/shock waves in a viscous medium, waves in fluid filled viscous 
elastic tubes, magneto hydrodynamic waves in a medium with finite electrical conductivity, mathematical 
modeling of turbulent fluid, and in continuous stochastic processes. 

Analytical methods for solving Burger's equation are very restricted and can be used in very special 
cases; so they cannot be used to solve equations of numerous realistic scenarios. Numerical methods which 
are commonly used such as finite difference, finite element methods etc. are need a large amount of 
computation and usually the effect of round-off error causes the loss of accuracy.   

So far many authors are applied various numerical methods to solve Burgers equations, some of them 
are finite element method [4], Least-squares quadratic B-spline finite element method [5], Cubic B-splines 
collocation method [6] etc. For large systems, these methods are inefficient in terms of both computer 
storage and computational cost.  

The multigrd approach is an alternative scheme to overcome these drawbacks. In 1964 Fedorenko [7] 
formulated a multigrid scheme to solve the Poisson equation in a recatangular domain. Bachvalov [8] 
generalized the technique for general elliptic PDEs in 1966. Up to this time, the approch was not yet 
practical. In 1973 the first practical results were published in a pioneering paper by Brandt [9]. He outlined 
the purpose and practical utility of multigrid methods.  Hackbush [10] independently discovered multigrid 
methods and provided some theoretical foundation in 1976. The multigrid method is largely applicable in 
increasing the efficiency of iterative methods used to solve large system of algebraic equations. Since their 
early application to elliptic partial differential equations, multigrid methods have been applied successfully 
to a large and growing class of problems. Classical multigrid begins with a two-grid process. First, iterative 
relaxation is applied, whose effect is to smooth the error. Then a coarse-grid correction is applied, in which 
the smooth error is determined on a coarser grid. This error is interpolated to the fine grid and used to correct 
the fine-grid approximation. Applying this method recursively to solve the coarse-grid problem leads to 
multigrid. 

Bastian et al. [11] was investigated in series of experiments to solve parabolic PDEs using multigrid 
methods. However, when meet by certain problems, for example parabolic type of problems with 
discontinuous or highly oscillatory coefficients, as well as advection-dominated problems, the standard 
multigrid procedure converges slowly with larger computational time or may break down. For this reason we 
go for wavelet multigrid method in which by choosing the filter operators obtained from wavelets to define 
the prolongation and restriction operators. 

"Wavelets" have been very popular topic of conversations in many scientific and engineering gatherings 
these days. Some of the researchers have decided that, wavelets as a new basis for representing functions, as 
a technique for time-frequency analysis, and as a new mathematical subject. Of course, "wavelets" is a 
versatile tool with very rich mathematical content and great potential for applications. However wavelet 
analysis is a numerical concept which allows one to represent a function in terms of a set of basis functions, 
called wavelets, which are localized both in location and scale. In wavelet applications to the solution of 
partial differential equations the most frequently used wavelets are those with compact support introduced by 
Daubechies [12].  Recently, many authors De Leon [13], Bujurke et al. [14] and Shiralashetti et al. [15] have 
developed wavelet multigrid methods. 

This paper gives an alternative method i.e. Daubechies Wavelet based full approximation scheme for 
the numerical solution of Burgers equation using Daubechies filter coefficients. Daubechies FAS is 
formulated in this paper have the following characteristics: 
•Provide approximations which are continuous and continuously differentiable  throughout   

the domain of the problems, and have piecewise continuous second derivatives. 
•The methods possess super convergence properties. 
•The methods incorporate IC and BCs in a systematic fashion. 

The organization of the paper is as follows.  Preliminaries of Daubechies wavelets are given in section 2. 
Section 3 deals with Wavelet multigrid operators. Method of solution is discussed in section 4. Numerical 
findings and error analysis are presented in section 5. Finally, conclusions of the proposed work are 
discussed in section 6. 

2. Preliminaries of Daubechies wavelets 
A major problem in the development of wavelets during the 1980s was the search for a multiresolution 

analysis where the scaling function was compactly supported and continuous. As we know, the Haar 
multiresolution analysis is generated by a compactly supported scaling function that is not continuous. The 
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B-spines are continuous and compactly supported but fail to form an orthonormal basis. In 1988 Ingrid 
Daubechies constructed a family of multiresolution analyses generated by scaling functions which are both 
compactly supported and continuous. That created great excitement among mathematicians and scientists 
performing research area of wavelets. Daubechies’ construction leads to a family of scaling functions that are 
compactly supported and smooth. 

Before the explanation of Daubechies wavelets based numerical methods, we are interested to explain 
some definitions 
2.1. Compactly supported wavelets 

The class of compactly supported wavelet bases was introduced by Daubechies [16]. They are an 
orthonormal bases for functions in 2 ( )L R . The construction of wavelet functions starts from building the 

scaling or dilation function, ( )x  and set of coefficients ,kb k Z , satisfies the two-scale refinement 

relation, 
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2.2. Vanishing moment 

The wavelet is said to have  M M N vanishing movement if it verifies the following condition 

( ) 0, 0,1,2.... 1mx x dx m M




    

where 2N M  for the Daubechies wavelets. 

2.3. Vanishing moment 

The wavelet bases induces a multiresolution analysis on 2 ( )L R  i.e. the decomposition of Hilbert space 
2 ( )L R  into a chain of closed subspaces 

2 1 0 1 2. . . . . .V V V V V       

Such that                                              
2 ( )j jW L R     

and                                                        0Vj j   

By defining the jW as an orthogonal complement of jV  and  1jV  , 

i.e. 1V V Wj jj    

The space 2 ( )L R  is represented as the direct sum of 'W j  s as 

2 ( )L R W j  

On each fixed scale j , the wavelets  /2
, ( ) 2 (2 ) :j j

j k x x k k Z     form an orthonormal basis of  

W j  and the functions  ,
/2( ) 2 (2 ) :j k

j jx x k k Z     form an orthonormal basis of V j .The coefficients 
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 kH a  and  kG b are quadrature mirror filters. Once the filter H has been chosen, it completely 

determines the function     and . 

In Daubechies wavelet system the coefficients  ka and  kb that define the refinement relation and 

also decide shape of the scaling function and wavelet function. This shape in turn decides the application 
where we can use the particular wavelet. The coefficients  ka and  kb  acts as signal filters. Wavelets must 

satisfy certain necessary conditions like orthogonality and certain desirable properties for specific kind of 
applications. These conditions, in turn, put restrictions on scaling and wavelet function coefficients. Some of 
the conditions are mentioned in above and remaining are as follows.  

 A wavelet basis is orthonormal if any two translated or dilated wavelets satisfy the condition 

, , , ,( ) ( )n k m l n m k lx x dx   




  

Where   is the Kronecker Delta function.  
 The necessary and sufficient condition for this to hold is that integer translates of the scaling 

function   exactly interpolate polynomials of degree up to K. That is, for each k, there exists constants lc  

such that 

( )k k
l l

l

x c x  

Daubechies introduced scaling functions satisfying this property and distinguished by having the 

shortest possible support. The scaling function N  has support 0, 1N  , while the corresponding wavelet 

2J  has support in the interval  1 / 2, / 2N N  and has ( / 2 1)N   vanishing wavelet moments. Thus, 

according to Daubechies scaling functions of order N  can exactly represent any polynomial of order up to, 
but not greater than N / 2–1.  

For example, Daubechies family of wavelets when N  = 4, we have filter coefficients, 
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2.4. Discrete wavelet transform 
The discrete wavelet transform (DWT) takes a series of N observations and produces N new values 

called wavelet coefficients. The DWT is structured around a set of filtering operations that determine 
coefficients. The wavelet coefficients contain information about the magnitude and location of different 
scales or, in filtering parlance, different pass-bands. The decomposition is performed sequentially, starting 
with the smallest scales and progressing to the larger scales, with the scale doubling in size with each 
iteration. The matrix formulation of the discrete wavelet transforms (DWT), which play an important part in 
the wavelet method. This is highly expedient and informative, particularly for the numerical computations. 
Then the discrete Daubechies wavelet transformation matrix  DWM  for the 4D  filters, whose matrix is 

given by 
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 
 
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3. Wavelet multigrid (WMG) operators 
Multigrid method is well known among the fastest solution in the numerical method. Particularly for 

elliptic problems, they have been proved to be highly accurate. Multigrid method have earned a reputation as 
an efficient and versatile approach for other types of computational problems as well, including other types 
of partial differential equations and systems and some integral equations. In multigrid method, the residual is 
passed from the fine grids to the coarser grids. Vectors from fine grids are transferred to coarser grids with 
Restriction operator (Ro), while vectors are transferred from coarse grids to the finer grids with a 
Prolongation operator (Po).  

In the wavelet-multigrid, the scaling functions, which are both compactly supported and continuous, 
were first constructed by Daubechies that created great excitement among mathematicians and scientists 
performing research in the area of wavelets. Daubechies high pass and low pass filter coefficients are used in 
the wavelet intergrid operators (restriction and prolongation) by the DWT matrix as given in section 2.4, 
authors [13] used restriction and prolongation operators as 
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4. Daubechies wavelet based full approximation Method of solution 

In this section, we applied the wavelet based full approximation scheme for the numerical solution of 
Burgers equation as follows: 

Nonlinear multigrid initiate by Brandt [9], which seeks to use concepts from the linear multigrid 
iteration and apply them directly in the nonlinear setting. Many problems of physical interest are nonlinear in 
character and for these problems the multigrid strategy provides new powerful algorithms. But this is not the 
case for nonlinear problems, and different strategies must be employed. In this paper, we describe how to 
apply multigrid to nonlinear problems. Applying multigrid method directly to the nonlinear problems by 
employing the method so-called Full Approximation Scheme (FAS). FAS is suitable for nonlinear problems 
[17, 18] which treats directly the nonlinear equations on finer and coarser grids. In FAS, Gauss-Seidel 
method is applied as nonlinear iteration to smoothen the error. Differently from linear multigrid, the full-
scale equation is solved on the coarse grid instead of the residual equation, because of the nonlinearity. 

Consider the Burgers equation, 

     
       2

2

, , ,
,

u x t u x t x t
u x t

t x x


  
 
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                                    (4.1) 

subject to initial condition (IC) and boundary conditions (BCs).  
Where u the real valued function and that is is assumed to be in L2(R) in the interval

0 , 1x t  .  We assume that Eq. (4.1) has a unique solution i.e. u  to be determined.  
Now discretizing the Eq. (4.1) by using finite difference scheme, we get the system of 

nonlinear equations of the form  

                                                               , ,i j i jF u b                                                       (4.2)   

where , 1,2,.....i j N , which have N N  equations with  N N  unknowns.       
Solving Eq. (4.2) through the Gauss Seidel iterative method, we get approximate solution v . 
Approximate solution contains some errors, and therefore required solution equals to sum of 

approximate solution and error. There are many methods to minimize such error to get the accurate 
solution. Some of them are FAS, WFAS etc. Now we are discussing the method of solution of the 
above mentioned methods as below. 

 
4.1. Full-Approximation Scheme (FAS) 
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Now, we are deliberating about the Full-Approximation Scheme (FAS) of solutions the algortith given 
by Briggs et. al [17] is as follows, 

From the system Eq. (4.2), we get the approximate solution v  for u . Now we find the residual as 
   ( )N N N NN N
r b A v     .                                                    (4.3) 

Reduce the matrices in the finer level to coarsest level using Restriction operator and then construct the 
matrices back to finer level from the coarsest level using Prolongation operator.  
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and then construct the matrices back to finer level from the coarsest level using Prolongation operator as. 
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From Eq. (4.3),  

       
2 2 2 2

rN N N NO ON N N N
r R P
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N N N NO ON N N N
v R v P

   
  
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                                           
2 2 2 2 2 2 2 2

( ) ( )N N N N N N N NA v e A v r
   

   .                                           (4.4) 

Solve Eq. (4.4) with initial guess ‘0’, we get  
2 2

N Ne
 . 

From Eq. (4.4), 
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                                       
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   .                                           (4.5) 

Solve Eq. (4.5) with initial guess ‘0’, we get  
4 4

N Ne
 . 

Then the procedure is continue up to the coarsest level, we have, 

       1 1 1 2 2 2 2 1O Or R r P
   
 . 

Similarly,                                          1 1 1 2 2 2 2 1O Ov R v P
   
  

and 

                                                1 1 1 1 1 1 1 1
( ) ( )A v e A v r

   
   .                                        (4.6) 

Solve Eq. (4.6) we get,  1 1
e

 . 

Now correct the solution to the finer level, i.e.   
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       2 2 2 1 1 1 1 2O Oe P e R
   
  

       4 4 4 2 2 2 2 4O Oe P e R
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  

and so on we have, 

       
2 2 2 2

N N N NO ON N N N
e P e R

   
 . 

Correct the solution with error.      N N N N N N
u v e

  
  . 

This is the required solution of the given Eq. (4.1). 
 
4.2. Wavelet Full Approximation Scheme (WFAS) 

The same procedure is applied as explained the FAS (Section 4.1) in which replacing operators 

RD W  and 
PD W  in place of 

OR  and 
OP  respectively. 

5. Numerical examples 

In this section, we applied FAS, WFAS for the numerical solution of Burgers equation and subsequently 
presented the efficiency of the methods in the form of tables and figures. The error analysis is considered as 

maxmax e aE u u  , where eu  and au  are exact and approximate solutions respectively.  

Test problem. Consider the Burgers equation (4.1) with initial and boundary conditions [19], subject to the 
I.C.:  

          2 sin( )
,0 , 0 1

cos( )

x
u x x

x

 
 

  


                                       (5.1) 

and  B.C.s: 

                     0 , 0 1 ,u t u t   ,     0 1t                                      (5.2) 

which has the exact solution  

   

2

2

2 sin( )
( , ) , 0 , 1

cos( )

t

t

e x
u x t x t

e x

 

 

 
 




  


                                (5.3) 

where 1   is a parameter. 
By applying the method explained in the section 4.1, for different values of    

 i.e.  
0.1, 0.05, 0.025, 0.005   (with 0.01t  , 2  ), 

we obtain the numerical solutions of the problem are compared with exact solution is presented in figures 1 
and Physical behavior of numerical solutions of problem in 3D are presented in figures 2-5. The maximum 
absolute errors with CPU time of the methods for 0.001   and 2   are presented in table 1 and Error 
analysis of the method for different values   and  is presented in table 2. 
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Fig. 1. Physical behavior of numerical solutions of test problem with 0.01t  , 2  . 

 

N  = 64                                                              N  = 1024 

Fig. 2. Comparison of numerical solutions with exact solution of test problem  

when 0.05   and 2   for N=64 & 1024. 
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N  = 64                                                              N  = 1024 

Fig. 3. Comparison of numerical solutions with exact solution of test problem 

 when 0.025   and 2   for N=64 & 1024. 

 

N  = 64                                                              N  = 1024 

Fig. 4. Comparison of numerical solutions with exact solution of test problem  

when 0.01   and 2   for N=64 & 1024. 
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N  = 64                                                              N  = 1024 

Fig. 5. Comparison of numerical solutions with exact solution of test problem 
 when 0.005   and 2    for N=64 & 1024. 

Table 1. Maximum error and CPU time (in seconds) of the methods of test problem 

 for 0.001   and 2  . 

N Method maxE  Setup time Running time Total time 

64 
FDM 7.8968e-06 7.8204 0.0012 7.8216 
FAS 7.8968e-06 0.0192 0.0003 0.0195 

DWFAS 7.8968e-06 0.0164 0.0001 0.0165 

256 
FDM 5.4390e-06 6.2829 0.0012 6.2841 
FAS 5.4390e-06 0.0204 0.0003 0.0207 

DWFAS 5.4390e-06 0.0165 0.0001 0.0166 

1024 
FDM 3.1252e-06 8.2394 0.0016 8.2410 
FAS 3.1252e-06 0.0277 0.0003 0.0280 

DWFAS 3.1252e-06 0.0166 0.0001 0.0167 

4096 
FDM 1.6882e-06 9.5276 0.0028 9.5304 
FAS 1.6882e-06 0.0208 0.0003 0.0211 

DWFAS 1.6882e-06 0.0167 0.0002 0.0169 
Table 2.  Error analysis of the method for different values   and  . 

N 

maxmax e aE u u   

For different values of      with 0.01   For different values of      with 2   

2   5   50   0.1   0.001   0.0001   

64 5.0678e-04 4.7588e-05 9.5429e-07 2.1572e-03 7.8968e-06 8.3262e-08 

256 3.5537e-04 3.1105e-05 2.7523e-07 2.0833e-03 5.4390e-06     5.7210e-08 

1024 2.0786e-04 1.7883e-05 7.8304e-08 1.4278e-03 3.1252e-06 3.2769e-08 

4096 1.1210e-04 9.5983e-06 2.4747e-08 8.3131e-04 1.6882e-06 1.7708e-08 
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6. Conclusions 
In this paper, a Daubechies wavelet based full approximation scheme (DWFAS) for the numerical 

solutions of Burgers’ equation with Dirichlet’s boundary conditions has been presented. The presented 
scheme is tested on one test problem and the obtained numerical results are reasonably agreeable in 
comparison to the existing numerical methods (i.e. FDM, FAS) and exact solution. From this the following 
conclusions about presented scheme are: 
i) The main advantages of the DWFAS is that the scheme is able to capture the behavior of numerical 

solutions for small coefficient of kinematic viscosity  . 
ii) From the error analysis, the convergence of the presented method is observed i.e. the error decreases 

when the level of resolution N increases and also  for smaller values of    &  larger values of  . 
iii) DWFAS is capable of reducing the volume of the computational work as compared to the classical 

methods and is still maintaining the high accuracy of numerical result. 
The presented scheme seems to be easily extended to solve model equations including more mechanical, 

physical or biophysical effects, such as nonlinear convection, reaction, linear diffusion and dispersion. 
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