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Abstract. In this paper, the complete synchronization of 4D Chua systems is investigated via linear 

controllers. Especially, the synchronization can be realized using only one or two linear controllers. By 

analyzing simulation results, it is known that when realizing the synchronization, the choice of linear 

controller has greater flexibility and the controlled variables can also be randomly selected. 
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1. Introduction  

Since being proposed by Pecora and Carroll [1], synchronization of chaotic systems has been paid much 

attention by many researchers[2-6]. Many kinds of methods have been discussed to study synchronization of 

chaotic systems, such as a stable-manifold-based method[7], adaptive method[8], back stepping scheme[9], 

sliding mode control[10], nonlinear control[11], and so on. Correspondingly, different types of 

synchronization have been proposed, for example, complete synchronization[12], anti-synchronization[13], 

phase synchronization[14], hybrid synchronization [15], etc. 

With further research on the synchronization, many chaotic systems have been explored, for instance, 

Lorenz system, Chen system, Rössler system, Chua system, etc. In these systems, at least one nonlinear term 

is involved in addition to linear terms. Chua system is a simple non-linear electronic circuits with chaotic 

behaviors. Initially, Leon. O. Chua addressed a 3D Chua’s circuit, which becomes a typical model for 

studying chaos due to its simplicity and representation of the nonlinear circuit. Chua system attracted 

researchers' attention and has been used widely. Later, some researchers found that 3D Chua system can not 

satisfied the requirements of studying circuit system and a 4D Chua system was put forward[16]. Afterwards, 

the dynamics of the 4D Chua system has been extensively studied. 

Based on above, complete synchronization of a 4D Chua system is investigated via linear controllers in 

this paper. Other parts of this paper are arranged as follows. Section 2 depicts the 4D Chua system and the 

attractors of it. In Section 3, the complete synchronization of the 4D Chua system is discussed via linear 

controllers using numerical simulations. Conclusions are drawn in Section 4. 

2. Model description 

In this section, hyperchaotic Chua system is considered as: 

𝑥̇1 = 𝑎(𝑥2 −  𝑝𝑥1 − 𝑞𝑥1
3), 

 𝑥̇2 = 𝑥1 − 𝑥2 + 𝑥3 + 𝑥4, 

𝑥̇3 = −𝑏𝑥2 + 𝑥4, 

     𝑥̇4 = −𝛾𝑥1 + 𝜌𝑥2 + 𝜔𝑥4 .                                                                   (1) 

If the parameters are chosen as b= 16, γ= 0.1, ρ= 0.6, ω= -0.03, p= −1/7 and q= 6/7, the dynamical 

behaviors of system (1) shows diversity for different values of a , which can be verified by simulation results. 

In our numerical calculations, the fourth order Runge-kutta algorithm is used, the time step is h=0.01, and the 

initial values for the variables of model (1) are selected as (0.01, 0.02, 0.03, 0.04), (-0.6, -0.5, -0.9, -0.8), (0.6, 

0.5, 0.9, 0.8), (-0.01, -0.02, -0.03, -0.04), respectively.  

The phase portraits of system (1) are plotted in Figs.1-4. When a=7.5, system (1) has only one 

periodical attractor for different initial values (Fig.1). But for a=7.745 and a=8.6, system (1) performs 
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coexistence of two periodical attractors (Fig.2) and three periodical attractors (Fig.3), respectively. When 

a=8.9, two periodical attractors and one chaotic attractor can coexist in system (1) (Fig.4). 

 
Fig.1 Periodical attractor on the platform of (𝑥, 𝑦) of system (1) when a=7.5, 

the right part is the cases for different initial values of system (1), 

(a) (0.01,0.02,0.03,0.04), (b) (-0.6,-0.5,-0.9,-0.8), (c) (0.6,0.5,0.9,0.8), (d) (-0.01,-0.02,-0.03,-0.04). 

 
Fig.2 Coexistence of two periodical attractors on the platform of (𝑥, 𝑦) of system (1) when a=7.745, 

the right part is the cases for different initial values of system (1), 

(a) (0.01,0.02,0.03,0.04), (b) (-0.6,-0.5,-0.9,-0.8), (c) (0.6,0.5,0.9,0.8), (d) (-0.01,-0.02,-0.03,-0.04) . 

  
Fig.3 Coexistence of three periodical attractors on the platform of (𝑥, 𝑦) of system (1) when a=8.6, 

the right part is the cases for different initial values of system (1), 

(a) (0.01,0.02,0.03,0.04), (b) (-0.6,-0.5,-0.9,-0.8), (c) (0.6,0.5,0.9,0.8),(d) (-0.01,-0.02,-0.03,-0.04) . 
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Fig.4 Coexistence of two periodical attractors and one chaotic attractor on the platform of (𝑥, 𝑦) of  

system (1) when a=8.9,the right part is the cases for different initial values of system (1), 

(a) (0.01,0.02,0.03,0.04), (b) (-0.6,-0.5,-0.9,-0.8), (c) (0.6,0.5,0.9,0.8),(d) (-0.01,-0.02,-0.03,-0.04). 

From Figs.1-4, it is easy to know that system (1) can be provided with multiple dynamical behaviors 

with the change of the system parameter a while other parameters are fixed. Figs.1-4 suggest that, when the 

parameter a is changing, attractors of system (1) can show a variety of patterns. This phenomenon is helpful 

for further expanding the application of Chua circuit system. 

3. Complete synchronization of hyperchaotic Chua system 

In this section, the complete synchronization of hyperchaotic Chua system is investigated via numerical 

simulations. In the simulations, the fixed system parameters are taken as b= 16, γ= 0.1, ρ= 0.6, ω= -0.03, p= 

−1/7, q= 6/7, while a is regarded as a changeable parameter. System (1) is chosen as the drive system, and 

the response system with controllers is written as 

𝑦̇1 = 𝑎(𝑦2 −  p𝑦1 − q𝑦1
3) + 𝑢1, 

𝑦̇2 = 𝑦1 − 𝑦2 + 𝑦3 + 𝑦4 + 𝑢2, 
𝑦̇3 = −𝛽𝑦2 + 𝑦4 + 𝑢3, 

𝑦̇4 = −𝛾𝑦1 + 𝜌𝑦2 + 𝜔𝑦4 + 𝑢4,                                                           (2) 

where 𝑢1, 𝑢2, 𝑢3, 𝑢4 are controllers to be constructed. 

To realize the complete synchronization of systems (1) and (2), let the errors be  

           𝑒1 = 𝑥1 − 𝑦1, 𝑒2 = 𝑥2 − 𝑦2, 𝑒3 = 𝑥3 − 𝑦3, 𝑒4 = 𝑥4 − 𝑦4.                            (3) 

If the variables of systems (1) and (2) satisfying the conditions lim
t→∞

𝑒𝑖 = 0 (𝑖 = 1,2,3,4), then it can be 

said that the two systems gain the complete synchronization.  
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Fig.5 The time series of error variables in (3), where 𝑢𝑖 = 𝑘𝑒𝑖 (𝑖 = 1,2,3,4) and k=0.8. 

It is easy to prove that the complete synchronization between systems (1) and (2) can be achieved if the 

controllers are chosen as 𝑢𝑖 = 𝑘𝑒𝑖 (𝑖 = 1,2,3,4) with enough large value of positive 𝑘. This result can be 

seen from the numerical simulation (Fig.5).  

In specific application of circuit system, the fewer the controllers are, the more convenient the system is 

to be used. For this reason, the complete synchronization between systems (1) and (2) are to be discussed 

using one or two controllers via numerical simulation.  

Case 1. Using only one controller 

In this case, numerical simulations are used to verified the synchronization results that, if one controller 

of 𝑢𝑖 = 𝑘𝑒𝑖 (𝑖 = 1,2,3,4) is chosen and used to control the response system, the complete synchronization 

between systems (1) and (2) can also be obtained. The main results are to be given as follows.  

If 𝑢2 = 𝑘(𝑥1 − 𝑦1) is chosen and the controlled response system can be written as 

𝑦̇1 = 𝑎(𝑦2 −  𝑝𝑦1 − 𝑞𝑦1
3), 

𝑦̇2 = 𝑦1 − 𝑦2 + 𝑦3 + 𝑦4 + 𝑘(𝑥1 − 𝑦1), 
𝑦̇3 = −𝛽𝑦2 + 𝑦4, 

            𝑦̇4 = −𝛾𝑦1 + 𝜌𝑦2 + 𝜔𝑦4,                                                              (4) 

the time series of errors between systems (1) and (4) are depicted in Fig.6, from which it is obvious to see 

that the complete synchronization between systems (1) and (4) can be arrived for enough large value of k. 

Fig.7 gives the bifurcation diagram of 𝑒1 with the change of parameter k, from which we know that the 

critical value of k to realize complete synchronization is about 0.425. 

 

Fig.6 The time series of errors between systems (1) and (4). 



Journal of Information and Computing Science, Vol. 12(2017) No. 3, pp 195-202 

 

 

JIC email for subscription: publishing@WAU.org.uk 

199 

 

Fig.7 The bifurcation diagram of 𝑒1 with the change of parameter k for 𝑢2 = 𝑘(𝑥1 − 𝑦1). 

If the controller is taken as 𝑢2 = 𝑘(𝑥2 − 𝑦2), and the controlled response system is written as 

𝑦̇1 = 𝑎(𝑦2 −  𝑝𝑦1 − 𝑞𝑦1
3), 

𝑦̇2 = 𝑦1 − 𝑦2 + 𝑦3 + 𝑦4 + 𝑘(𝑥2 − 𝑦2), 
𝑦̇3 = −𝛽𝑦2 + 𝑦4, 

           𝑦̇4 = −𝛾𝑦1 + 𝜌𝑦2 + 𝜔𝑦4,                                                              (5) 

the error dynamics of systems (1) and (5) is drawn in Fig.8, from which we know that system (5) can 
synchronize system (1) for enough large value of k. Fig.9 gives the bifurcation diagram of 𝑒1 with the change 
of parameter k, from which it is known that the critical value of k to obtain the complete synchronization is 
about 2.96.  

 

Fig.8 Error dynamics of systems (1) and (5). 
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Fig.9 The bifurcation diagram of 𝑒1 with the change of parameter k for 𝑢2 = 𝑘(𝑥2 − 𝑦2). 

When the controller is chosen as 𝑢3 = 𝑘(𝑥2 − 𝑦2), and the controlled response system is  

            𝑦̇1 = 𝑎(𝑦2 −  𝑝𝑦1 − 𝑞𝑦1
3), 

            𝑦̇2 = 𝑦1 − 𝑦2 + 𝑦3 + 𝑦4, 
            𝑦̇3 = −𝛽𝑦2 + 𝑦4 + 𝑘(𝑥2 − 𝑦2), 

         𝑦̇4 = −𝛾𝑦1 + 𝜌𝑦2 + 𝜔𝑦4,                                                          (6) 

the curve evolutions of the errors between systems (1) and (6) is given in Fig.10, from which we know that 

the complete synchronization of systems (6) and (1) can be obtained for enough large value of k. 

 

Fig.10 The curve evolution of the errors between systems (1) and (6). 

In this case, only one linear controller is used to achieve the complete synchronization of hyperchaotic 

Chua systems. Simulation results suggest that the selection of the controller and controlled variable are all 

flexible. Whichever one controller of 𝑢𝑖 = 𝑘𝑒𝑖 (i = 1,2,3,4) is chosen and whichever variable is selected to 

be controlled, the complete synchronization of hyperchaotic Chua systems can be realized. 

Case 2. Using two controllers 

To further investigate the effect of controller selection on the complete synchronization, two linear 

controllers are used to discuss the complete synchronization of hyperchaotic Chua systems. 

If the controllers are taken as 𝑢1 = 𝑘(𝑥1 − 𝑦1), 𝑢4 = 𝑘(𝑥4 − 𝑦4), and the controlled response system is 

     𝑦̇1 = 𝑎(𝑦2 −  p𝑦1 − q𝑦1
3) + 𝑘(𝑥1 − 𝑦1), 

     𝑦̇2 = 𝑦1 − 𝑦2 + 𝑦3 + 𝑦4, 

     𝑦̇3 = −𝛽𝑦2 + 𝑦4, 

     𝑦̇4 = −𝛾𝑦1 + ρ𝑦2 + 𝜔𝑦4 + 𝑘(𝑥4 − 𝑦4),                                        (7) 
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the time series of the errors between systems (1) and (7) is plotted in Fig.11, from which we know that 

the complete synchronization of systems (1) and (7) can be realized when a=11 and k=3.  

 

Fig.11 Time series of the errors between systems (1) and (7). 

If the controllers are chosen as 𝑢1 = 𝑘(𝑥2 − 𝑦2), 𝑢4 = 𝑘(𝑥4 − 𝑦4), the controlled response system is 

written as 

         𝑦̇1 = 𝑎(𝑦2 −  p𝑦1 − q𝑦1
3) + 𝑘(𝑥2 − 𝑦2), 

         𝑦̇2 = 𝑦1 − 𝑦2 + 𝑦3 + 𝑦4, 

          𝑦̇3 = −𝛽𝑦2 + 𝑦4, 

         𝑦̇4 = −𝛾𝑦1 + ρ𝑦2 + 𝜔𝑦4 + 𝑘(𝑥4 − 𝑦4),                                             (8) 

the dynamical behaviors of the errors between systems (1) and (8) is drawn in Fig.12, which indicates that 

the complete synchronization between systems (1) and (8) can be gotten when a=11 and k=3. 

 
Fig.12 The dynamical behaviors of the errors between systems (1) and (8). 

In this case, simulation results illustrate that, if we select two from the four controllers   𝑢𝑖 = 𝑘𝑒𝑖 (i =
1,2,3,4), the controlled response system can complete synchronize the drive system. Further investigation 

can describe that, whichever two controllers are selected and no matter which two variables are under control, 

the complete synchronization between the hyperchaotic Chua systems can be achieved.  

4. Conclusions 

In this paper, the complete synchronization of hyperchaotic Chua systems is investigated via linear 

controllers. Firstly, the synchronization between the drive system and the controlled hyperchaotic Chua 

system with four controllers is considered. Numerical simulation suggests that the synchronization can be 

easily realized via four controllers. To further simplify the controlled system, the synchronization between 
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the drive system and the controlled hyperchaotic Chua system with one or two controllers is discussed. 

Simulation resultions indicate that fewer controllers can also make hyperchaotic Chua systems achieve 

synchronization. Simultaneously, it is found that, when we select one or two of the four linear controllers 

randomly and make any one or two variables be controlled, the complete synchronization of 4D Chua system 

can all be obtained. Therefore, it can be said that linear controller has certain superiority in achieving 

synchronization of hyperchaotic systems.     
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