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Abstract. In this paper wavelet preconditioned method is used for the solution of Electrohydrodynamic 

flow problem. A finite difference method is used for the solution of Electrohydrodynamic flow equation. The 

method comprise the nonlinear Newton iteration on the outer loop and a linear iteration on the inside loop 

where wavelet based preconditioned GMRES (Generalized Minimum Residual) method is used. In the 

scheme the Jacobian vector product is approximated accurately with much ease (without forming Jacobian 

explicitly and requiring no extra storage). It overcomes the limitations of conventional schemes for the 

numerical solution of Electrohydrodynamic flow problem, for computing fluid velocity, covering wide range 

of Hartmann electric number (Ha) parameter with constant   of practical interest. To confirm and validate 

the solutions obtained, by the present method, are compared with those obtained by GMRES method. 
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1. Introduction  

Wavelet analysis is a new numerical tool that allows one to represent a function as a linear combination 

of building blocks (a basis), called wavelets, which are localized in both translation and dilation. Good 

wavelet localization properties in physical and wave number spaces are to be contrasted with the spectral 

approach, which employs infinitely differentiable functions but with global support and small discrete 

changes in the resolution. The various types of wavelets have been used in current research areas in which 

haar wavelet is the simplest wavelet because of simple applicability, orthogonality and compact support. The 

haar wavelet based techniques has been successfully used in various applications such as time–frequency 

analysis, signal de-noising, numerical approximation and solving differential equations (Chen and Hsiao [1], 

Hsiao and Wang [2], Hsiao [3] and Lepik [4-6]). 

Most of the technical problems and engineering phenomena are frequently defined based on the 

nonlinear differential equations. It is essential to remember that except a limited number of these problems, 

finding efficient solution is difficult. Therefore, researchers used some classical numerical methods. The 

classical numerical methods such as the Newtons method (NM), ILU, GMRES are useful numerical 

techniques ones, which present the numerical solutions for nonlinear differential equations. In this paper, 

numerical solution of electrohydrodynamic flow problem of a fluid in an ion drag configuration in a circular 

cylindrical conduit is presented using wavelet preconditioners. The electrohydrodynamic flow of a fluid and 

its governing equations is considered [7]. The electrohydrodynamic flow is important in analysis of the flow 

meters, accelerators, pumps and magnetohydrodynamic generators. The differential equation of the problem 

is the nonlinear singular boundary value problem. 
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where y is the velocity of the fluid, x is the radial distance from the center of cylindrical conduit, Ha is a 

constant (Hartmann electric number) and   is also a constant that shows the nonlinearity of the problem. 

Existence and uniqueness of solution of Eqs. (1.1) and (1.2) are discussed by Paullet [8]. 

As we know, most of the flow and heat transfer equations are nonlinear and usually have not an 

efficient solution. So, numerical techniques are used many researchers to solve such equations. The most 

known numerical methods used to solve electrohydrodynamic flow problem is the Newtons, ILU and 
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GMRES etc. these classical methods gives slow convergence as well as more computational time. To 

overcome these limitations, a significant challenge is to solve the problem efficiently with faster convergence 

and less computational time, because Eq. (1.1) is a singular nonlinear BVP, and the type of nonlinearity is in 

the form of a rational function. Numerical solution of this problem is presented using wavelet based 

preconditioners. 

The present work is organized as follows; Preliminaries are given in section 2. Method of solution with 

numerical experiment is discussed in section 3. Finally, conclusion of the proposed work is drawn in section 

4. 

2. Preliminaries 

Wavelets are functions generated from one single function called the mother wavelet by the simple 

operations of dilation and translation. A mother wavelet gives rise to a decomposition of the Hilbert space
2 (R)L , into a direct sum of closed subspaces , ZjW j . [9] 

Let  
/2

, ( ) 2 (2 )j j
j k x x k    

and 

2 ,(R)
: Zj j kL

W clos k                                                         (2.1) 

Then every 2(R)f L  has a unique decomposition 

1 0 1( ) . . . . . .f x s s s                                                           (2.2) 

Where j js W  for all Zj , it is 
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Using this decomposition of 2 (R)L , a nested sequence of closed subspaces , ZjV j  of 2 (R)L can be 

obtained, defined by 

2 1. . .j j jV W W                                                               (2.4) 

These closed subspaces  , ZjV j  of 2 (R)L , form a “multiresolution analysis” with the following 

properties: 

i) 1 0 1. . . . . .V V V     

ii)  2

2clos (R)jL
V L  
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iv) 1j j jV V W    

v) 1( ) (2 ) , Zj jf x V f x V j     

Let 0V  the so-called “scaling function” that generates the multiresolution analysis  
Z

j
j

V


 of 2 (R)L . 

Then 

 ( ) : Zk k                                                                       (2.5) 

is a basis of 0V , and by setting 
/2

, ( ) 2 (2 )j j
j k x x k                                                             (2.6) 

it follows that, for each Zj , the family 

 , : Zj k k                                                                        (2.7) 

is also a basis of jV . 

Then, since 0V  is in 1V  and since  1, : Zk k   is a basis of 1V , there exists a unique sequence ka  

that describes the following “two-scale relation”: 
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                                                               (2.8) 
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of the scaling function  . 

Different choices for   may yield different multiresolution analyses, and the most useful scaling 

functions are those that have compact support. As an example of multiresolution analysis, a family of 

orthogonal Daubechies wavelets with compact support has been constructed by Daubechies [9]. 

A wavelet basis is orthonormal if any two translated or dilated wavelets satisfy the condition 

, , , ,( ) ( )n k m l n m k lx x dx   





                                                         (2.9) 

where   is the Kronecker Delta function. 

Each wavelet family is governed by a set of N (an even integer) coefficients : 0, 1, . . . , 1ka k N   

through the two-scale relation 
1

0

( ) (2 )
N

N k N

k

x a x k 




                                                             (2.10) 

Based on the scaling function ( )N x , the mother wavelet can be written as, 
1

2

( ) (2 )N k N

k N

x b x k 
 

                                                          (2.11) 

Since the wavelets are orthonormal to the scaling basis the coefficients of the scaling function and the 

mother wavelet for the two-scale equation are related by: 

1( 1)k
k kb a                                                                           (2.12) 

In her work, Daubechies [10] found and exploited the link between vanishing moments of the wavelet 
  and regularity of wavelet and scaling functions,   and  . The wavelet function   has K  vanishing 

moments if 

( ) 0kx x dx   for 0 k K                                                          (2.13) 

and a necessary and sufficient condition for this to hold is that integer translates of the scaling function   

exactly interpolate polynomials of degree up to K. That is, for each k, 0 k K   there exists constants lc  

such that 

( )k k
l l

l

x c x                                                                      (2.14) 

Daubechies introduced scaling functions satisfying this property and distinguished by having the 

shortest possible support. The scaling function N  (where N is an even integer) has support  0, 1N  , while 

the corresponding wavelet N  has support in the interval  1 / 2, / 2N N  and has ( / 2 1)N   vanishing 

wavelet moments [10]. Thus, according to Eqn. (2.14) Daubechies scaling functions of order N can exactly 

represent any polynomial of order up to, but not greater than N / 2 − 1. 

The coefficients ka  in Eqn. (2.10) are called scaling function filter coefficients and satisfy the following 

conditions based on the orthonormality and moment conditions. 
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


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                                  (2.15) 

Solving Eqn. (2.15) we get the scaling function coefficients ka . If N = 4, we get the scaling 

coefficients: 0 1 2 30.68301270, 1.18301270, 0.31698729, 0.18301270a a a a     . Using ( ) / 2kh k a , we 

get, (0) 0.482962913, (1) 0.836516303, (2) 0.129409522, (3) 0.224143868h h h h     . 
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Once we obtain coefficients { h ( k )} , we can find { g ( k ) } . Just reverse the coefficients and change 

the sign at the alternate positions. Therefore (0) (3), (1) (2), (2) (1), (3) (0)g h g h g h g h       using these 

coefficients in wavelet preconditioner matrix as given in Chen [11]. 

 

3. Method of solution and Numerical experiment 

The finite difference discretization of the equations (1), 
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with boundary conditions, 0)1(,0)0('  yy . After getting system of nonlinear equations are solved using 

Newton-GMRES method. For each Newton iteration (outer loop) there is a linear system to be solved using 

restarted GMRES(m) (inner loop). For implementing GMRES(m) restart GMRES every m steps using latest 

iterate as the initial guess for the next GMRES cycle. For the convergence of GMRES (25) use Daubechies 

wavelet based preconditioners (details given in Bujurke et al. [12]). The solution scheme consists of the 

following steps. 

Step-1: take initial values of iy and constant values ,Ha  

Step-2: using Newton’s scheme 
)('

)(
)()( 1

i

i
ii

xf

xf
xyxy    

Step-3:      we assume )()('
)('

)(
ii

i

i xfcxf
xf

xf
c   

Step-4: solve Step-3 we get c  

Step-5: substitute c  value in Step-3 then go to Step-2, we get )( 1ixy   

Step-6:      numerical underrelaxation for stability and convergence of iteration 

5.001.0),(1  CyyCyy old

i

predictornew

i

old

i

new

i  

Step-7: while not converged go to Step-2 

The choice of the stopping criteria for linear system is guided by the behavior of the solution of the 

nonlinear system at the previous Newton iteration. To optimize the cost of implementation and ensure 

accurate solution a constant tolerance of 1 06E  is taken in our computations. Once accurate solution of 

linear system is obtained Newton-inexact scheme (requiring just 4-6 iterations) enables in finding solution of 

fluid velocity )(xy  accurately with error norm less than 1 08E . This computation is repeated for different 

set of Hartmann electric number (Ha) and fixed constant  . All the computations are done in MATLAB in 

double precision, as shown in table 1 and figures 1, 2, 3 and 4. 

Table 1. The sensitivity of convergence of four schemes with Hartmann electric number ( 1Ha ) and 

constant 5.0 . 

 

 
n

 

Newton – 

GMRES with 

ILU 

Preconditioner 

[43] (Iterations) 

Newton – GMRES with Wavelet 

Preconditioner 

DWT 

(Iterations) 

DWTP

er 

(Iterations) 

DWTPer

Mod 

(Iterations) 

6

4 

        Yes 

(78) 

Yes 

(43) 

Yes 

(18) 

Yes (11) 

1

28 

Yes (165) Yes 

(75) 

Yes 

(20) 

Yes (24) 

2

56 

Yes (237) Yes 

(189) 

Yes 

(201) 

Yes (55) 

5

12 

Yes (312) Yes 

(201) 

Yes 

(201) 

Yes (76) 

1

024 

Yes (350) Yes 

(245) 

Yes 

(201) 

Yes (81) 
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Fig. 1. Numerical solution of fluid velocity )(xy  for 5.0,128  n  of Eq. (1.1). 

 

Fig. 2. Convergence of the fluid velocity )(xy  using different schemes with Hartmann electric number 

( 1Ha ) and constant 5.0  & 64n . 
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Fig. 3. Convergence of the fluid velocity )(xy  using different schemes with Hartmann electric number 

( 1Ha ) and constant 5.0  & 128n . 

 

Fig. 4. Convergence of the fluid velocity )(xy  using different schemes with Hartmann electric number 

( 1Ha ) and constant 5.0  & 256n . 

4. Conclusions 

An important issue of obtaining converging solution of fluid velocity )(xy  using Jacobian free 

Newton-Krylov (GMRES (25)) method, with Daubechies wavelet based preconditioners, is presented here. 
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Fluid velocity )(xy  solution is computed accurately. Later, the fluid velocity )(xy  is presented for various 

parameters of Hartmann electric number. The robustness of these methods overcomes the sensitivity of 

classical iteration schemes in fluid velocity solutions to slight variations of parameters, Hartmann electric 

number. Wavelet based preconditioners reduce the number of iterations and accelerate the convergence of 

GMRES in solving the linear system, almost exactly. Also, the computations confirm these schemes to be 

equally reliable and attractive alternatives to established GMRES methods used in fluid flow problems.  
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