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Abstract. Locality sensitive discriminant analysis is a typical and very effective graph-based 
dimensionality reduction method which has been successfully applied in pattern recognition problems.  
LSDA aims to find a projection which maximizes the margin between data points from different classes at 
each local area. As a result, it can discover the local geometrical structure of the data samples. However, just 
as linear discriminant analysis, it has the small sample size (SSS) problem. To overcome this limitation, we 
propose a novel exponential locality sensitive discriminant analysis algorithm in this paper. The proposed 
algorithm can make nearby objects with the same labels in the input space also nearby in the new 
representation; while nearby objects with different labels in the input space should be far apart. In addition, it 
can also deal with the SSS problem.  The experiments on gene expression data sets verify the effectiveness of 
the proposed algorithm. 
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1. Introduction  
In recent years, with the rapid development of microarray gene-expression technology, it is now 

possible to simultaneously monitor the expression of all genes in the genome with a single experiment. One 
important application of gene expression data is the classification of cancer or other diseases, which draws a 
great number of researchers’ attention [1-3]. Typically, the gene expression data sets are characterized by 
thousands of variables on only a few observations. It has been observed that although there are a lot of genes 
for each observation, the number of tissue samples ranges from tens to hundreds. In other words, there is 
much redundant information resided in the high-dimensional gene-expression data. To remove redundant 
information, dimensionality reduction technique is an effective way.  

During the past decades, many dimensionality reduction algorithms have been developed. Classical 
dimensionality reduction methods can be categorized into two class: unsupervised methods and supervised 
methods. Representatives of unsupervised methods are principal component analysis (PCA) [4], independent 
component analysis (ICA) [5] and locality preserving projections (LPP) [6]. Unfortunately, unsupervised 
dimensionality reduction methods don’t utilize any class information so they are not suitable for 
classification problems. For supervised methods, linear discriminant analysis (LDA) [7] is one of the most 
popular dimensionality reduction techniques. LDA seeks the optimal transformation that maximizing the 
between-class scatter while at the same time minimizing the within-class scatter. LDA has been widely used 
in many practical applications such as  image retrieval and face recognition due to the fact that it can extract 
the most discriminatory features. Many extended LDA algorithms have been developed, for example, 
regularized discriminant analysis (RDA) [8], kernel linear discriminant analysis (KLDA) [9], two 
dimensional linear discriminant analysis (2DLDA) [10], locality sensitive discriminant analysis (LSDA) [11] 
and so on. 

However, in many case, the number of samples is smaller than the dimensionality of the samples which 
will leads to the SSS problem in linear discriminant analysis based methods. In this paper, the SSS problem 
of LSDA algorithm is considered and a novel exponential LSDA (ELSDA) algorithm is proposed to 
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overcome the shortcoming. The proposed ELSDA method not only inherits the advantages of 
the LSDA algorithm, but also avoids the SSS problem. 

The rest of this paper is organized as follows. Section 2 gives a brief review of LSDA. Our ELSDA 
approach is proposed in section 3. Experimental results and some conclusions are provided in sections 4 and 
5, respectively. 

2. Locality sensitive discriminant analysis 
LDA is a supervised learning algorithm, which can take advantage of the classification information of 

samples, and has received wide attention in the field of pattern recognition. However, LDA does not consider 
the distribution of samples, so it is not very good to deal with the data with nonlinear geometric distribution. 
To resolve this drawback, a local sensitive discriminant analysis (LSDA) method is proposed in literature 
[11]. LSDA can make full use of both the label information and the local manifold structure information of 
labeled samples to guide the dimensionality reduction process. 
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 where wD   is a diagonal matrix which is satisfied that   j ijwiiw WD ,, . 

Thus the objective function of LSDA can be written as: 
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，then the objective function (4) can be recast as the following 

optimization problem:  
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Construct the Lagrangian function as follows: 
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The projective directions are the leading eigenvectors of the following equation:  
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Then for a given sample x , its features can be obtained using the projective directions. 
                                                                        (7) 

3. Exponential locality sensitive discriminant analysis (ELSDA) 
As a supervised manifold learning algorithm, LSDA can use both the class information and the geomery 

structure information of samples to aid the feature extraction process. However, LSDA doesn't consider the 
small sample problem. In this section, the ELSDA algorithm is proposed to solve this problem. 

 
3.1. Matrix exponential 

In this subsection, we will introduce the definition of matrix exponential and its properties [12].  For an 
square matrix A  with the size nn , its exponential matrix A can be expressed as 
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where I is the identity matrix. 
The  matrix  )exp( A has many merits, which can be summarized as follows: 

(1) )exp( A  is a finite and full rank matrix.  

(2) If there exists matrix B  satisfied that BAAB  , then )exp()exp()exp( BABA  . 

(3) The exponential matrix )exp( A  is invertible. In fact, IAAAA  )exp()exp()exp( .Therefore, the 

inverse matrix of )exp( A  is )exp( A . 

(4) For any nonsingular matrix B , we have BABABB )exp()exp( 11   .  

(5) If d21 vvv ,,,   are eigenvectors of  A  corresponding to the eigenvalues d21  ,,,  , then 

d21 vvv ,,,  are eigenvectors of  )exp( A  corresponding to the eigenvalues deee  ,,, 21  . 

Among the characteristics of the  matrix  )exp( A ,  the most important  is that it  is a invertible matrix. In 

addition, it has the same eigenvectors as matrix  A . As a result, we can  substitute TXWLX wb ))1((  

and TXXDw  with )XWLX wb
T))1((exp(    and )XXDw

Texp(  in Eq.(7)  respectively to get the 

objective function of ELSDA. 
3.2. ELSDA 

Based on Eq.(7)  and Matrix exponential theory, the criterion of ELSDA can be specially established as 
follows: 
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The solution of  Eq. (11) can be easily achieved by the following generalized eigenvalue  problem: 

)pXXD)pXWLX wwb
TT exp())1((exp(                                (12) 

Specifically, the coefficient matrix P  can be constructed by the eigenvectors of Eq.(9) associated with the 

first d  largest eigenvalues d21 ppp ,,,  , i.e. the coefficient matrix P  can be constructed a 

),,,( d21 pppP  . 

Therefore the new data representation of x  can be expressed as: 

xPy T                                                                         (13) 
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One thing that should be pointed out is that we should normalize the matrix before calculating its matrix 
exponential due to that its matrix exponential may involve large numbers. 
3.3. The steps of the ELSDA algorithm 

In summary of the preceding description, the main steps of the proposed method are described below: 
Step 1.  Normalize the data samples , , l1x x . 

Step 2.  Construct the weight matrices bW  and wW  according to  Eq. (3) and Eq. (4) respectively. 

Step 3.  Calculate the matrices bL  and wL . 

Step 4 . Calculate the matrices )XWLX wb
T))1((exp(    and )XXDw

Texp( . 

Step 5. Compute the eigenvectors d21 ppp ,,,   of )XWLXX wb
TT

wXD ))1((exp())(exp( 1    

associated with the first  d   largest eigenvalues, then the optimal projection matrix is formed by 

),,,( d21 pppP  . 

Step 6.  Feature extraction: xPy T . 

4. Experimental results 

BBDED problem is solved using SOS algorithm for a system of 10 generators, 6 customers in 12 
dispatch periods. The parameters set as: population size-50, maximum number of iteration-100. 
4.1. Convergence analysis  

In this section, we will evaluate the performances of the proposed ELSDA algorithm for gene 
expression data classification based on two public microarray data sets. The details of the data sets used in 
our experiments are summarized as follows: 

The Colon dataset contains 62 samples collected from colon-cancer patients. Among them, 40 tumor 
biopsies are from tumors and 22 normal. There are 7129 genes in the dataset[13]. 

The Leukemia dataset contains two types of acute leukemia: 47 acute lymphoblastic leukemia and 25 
acute myeloid leukemia. There are 2000 genes in the dataset [14]. 

For comparison, we also present the results of two competing dimensionality reduction algorithms, i.e., 
linear discriminant analysis (LDA) and locality sensitive discriminant analysis (LSDA). In this paper, the 
values of the regularization parameter   in LSDA an ELSDA is fixed to 0.1, the number of nearest 
neighbors is empirically set to 8. For all the dimensionality reduction algorithms, we reduce the dimension to 
20.  

Many classifiers have been successfully used to classify gene expression data, such as K-neighbor [15], 
Bayesian [16], and Support Vector Machines [17] and so on. In this paper, the K-neighbor classifier with 
K=1 is adopted because of  its simplicity.  

In order to obtain reliable experimental results, the tests are carried within the framework of 3-fold cross 
validation, a statistical method of evaluating and comparing learning algorithms. Firstly, the data is 
partitioned into three data sets of approximately equal size respectively. Then the training data set, which 
contains two parts of the subsets, is used to learn a classification model while the remaining subset is used to 
validate the effectiveness of the proposed model. The procedure is repeated three times and the performance 
is evaluated by the averaged recognition results over the three subsets. 

In general, the recognition rate varies with the dimension of the feature subspace. Figure 1-2 shows the 
plots of recognition rates versus dimensionality reduction for the LDA, LSDA and ELSDA algorithms on the 
Colon dataset and the Leukemia dataset respectively. As can be seen, our proposed ELSDA algorithm 
outperforms LDA and LSDA in recognition accuracy with different number of dimensions. In addition, 
ELSDA is more stable than the other two methods. 
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Fig. 1 Recognition results of different algorithms on the Colon dataset 

 

Fig. 2 Recognition results of different algorithms on the Leukemia dataset 

 

Table.1  The top recognition rates of LDA, LSDA and ELSDA 

Method LDA LSDA ELSDA 

The Colon dataset 83.33% 85.00% 86.67% 
The Leukemia dataset 90.28% 93.06% 94.44% 

The experiment has been conducted to demonstrate the properties of the proposed algorithm. From the 
experiment results we can have three observations: 
(1).LDA is a traditional linear dimensionality reduction method and gets the poorest results among the  three 
methods. 
(2).Comparatively, LSDA and ELSDA are based on the graph theory and contain valuable geometry 
structure information which is helpful for nonlinear classification purpose, so they have stronger recognition 
power and their recognition results are better than LDA. 



Journal of Information and Computing Science, Vol. 12(2017) No. 3, pp 210-215 
 
 

JIC email for subscription: publishing@WAU.org.uk 

215

(3).ELSDA outperforms the other two techniques, etc. LDA and LSDA. This is mainly because it not only 
exploits the geometry of the data manifold but also does not suffer from the SSS problem, so that it can 
reserve more useful information and achieve the best results among the three algorithms. 

5. Conclusion 

This paper presents a new dimensionality reduction method called ELSDA. The proposed ELSDA 
algorithm exploits not only the label information but also the local manifold structure of given labeled 
samples. In addition, it can preferably solve the SSS problem. As a result, ELSDA is expected to perform 
better when there are no sufficient training samples. The ELSDA method is tested on gene expression data 
sets and the experimental results demonstrate the superior performance of our proposed algorithm. 
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