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Abstract. A method for solving the descriptor continuous-time linear system is focused. For easily, it is
converted to two standard continuous-time linear systems by the definition of a derivative and propositional
state feedback. Then partial eigenvalue assignment is used for obtaining the derivative and propositional state
feedbacks and solving the standard systems. In partial eigenvalue assignment, just a part of the open loop
spectrums of two standard linear systems are reassigned, while leaving the rest of the spectrum invariant and
for reassigning, similarity transformation is used. Using partial eigenvalue assignment is easier than using
eigenvalue assignment. Because by partial eigenvalue assignment, size of matrices and state and input
vectors are decreased and stability is kept, too. It is worthy to mention that eigenvalues of closed-loop matrix
of original system, i.e., descriptor and second converted system are inverse of each other. Also concluding
remarks and an algorithm are proposed to the descriptions be obvious. At the end, convergence of state and
input vectors in the descriptor system to balance point (zero) are showed by figures in a numerical example.

Keywords: descriptor system, derivative and propositional state feedback, partial eigenvalue assignment,
converge to balance point.

1. Introduction

Descriptor systems that are also called singular systems are more general and precise than a normal
model to depict a dynamical physical. Applications of descriptor systems can be found in various fields such
as artificial neuron networks, circuits systems, chemical processes, economics, biologic, power, modeling of
mechanical multi body systems and etc. [6, 10, 11, 20, 25, 28]

Some of the first fundamental works on eigenstructure assignment in descriptor linear systems were
established in the 1980s by a number of researchers, such as Cobb (1981) [5], Armentano (1984) [1],
Fletcher (1986) [9], Ozcaldiran and Lewis (1987) [21].

In recent years there are many subjects are related to these problems like switched descriptor systems
and eigenvalue assignment in state feedback control for uncertain systems [22, 27]. Also Karbassi et al.
worked on non-linear state feedback controllers like in [19].

In the available literature on descriptor systems, there are two kinds of stabilization problems for
singular systems. One consists in designing a state or output feedback controller in such a way that the
closed-loop system is regular, impulse-free, and stable or equivalently admissible. The other is to design a
state or output feedback controller in order to make the closed-loop system regular and stable. Concerning
the stability analysis and the stabilization problem, a number of approaches assuming or not assuming the
regularity of the descriptor system have been proposed in the literature let us quote for instance [2, 6, 26]
among those assuming the regularity and [6, 26] without assuming the regularity. Also positivity and
stability of linear descriptor systems have been investigated in [13, 15] for systems with regular pencils.

Many practical applications such as the design of large and sparse structures, electrical networks, power
systems, computer networks, etc., give rise to very large and sparse problems and the conventional numerical
methods for EVA problem do not work well. Furthermore, in the most of these applications only a small
number of eigenvalues, which are responsible for instability and other undesirable eigenvalues, need to be
reassigned. Clearly, a complete EVA, in case when only a few eigenvalues are bad, does not make sense.
This consideration gives rise to the partial eigenvalue assignment (PEVA) problem for the linear control
system such that undesirable eigenvalues are reassigned and other eigenvalues unaltered. An explicit solution
to the partial eigenvalue problem by using one of orthogonality relations between eigenvectors for matrix
polynomial is considered in [23]. The conditions for existence and uniqueness of the solution for the single-
input problem were given in [24] and for multi-input were presented in [8].
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In this paper, the stability of descriptor continuous-time linear systems will be investigated. Our method
is mixed of PEVA, EVA by similarity transformation and a useful method for converting the descriptor
linear system to the standard linear systems. First, the descriptor continuous-time linear system (1) is
converted to the standard continuous-time linear systems (8) and (10) by the definition of the derivative and
propositional state feedback (5) that are calculated by the PEVA method (section 3). In other hand, we need
to reassign undesired eigenvalues of open-loop spectrums in standard systems with smaller sizes of matrices
such that other eigenvalues unchanged. Also a theorem for existence and uniqueness solution for PEVA in
multi-input is represented. Then feedbacks in descriptor system are obtained by an easy relationship between
these feedbacks and gained feedbacks by PEVA from (21). It is important to say for reassigning undesired
eigenvalues, similarity transformation (section 4) is used that is a simple method with high accuracy.

As mentioned it is clear that our method has some advantages that solving the descriptor continuous-
time linear systems will be more and more easier. The first advantage is, converting descriptor continuous-
time linear system to standard continuous-time linear systems, because working on standard systems is easier
than descriptor systems. Also we do not need the assumption of being full rank open-loop matrix in standard
systems because of using derivative and propositional state feedback [3]. EVA have been an applicable
method for finding the solution in standard systems and their stability, but by PEVA just by reassigning a
part of open-loop matrix spectrum in standard systems while keeping other eigenvalues unvariant, their
stability are kept. In PEVA we decrease the size of matrices and state and input vectors, it is obvious that
calculating is more easily than EVA and obtaining state feedback is so comfortable by state feedback
governed in PEVA and they are other advantages of our method. Therefore the state and input vectors in the
original system, i.e., descriptor continuous-time linear system, converge to balance point and we show this
by figures in our example. It is worthy to mention that we do not need some assumptions like no having
eigenvalues near zero and some criteria on some vectors and being distinct eigenvalues by orthogonality
relations for PEVA in [23] or dealing with full row rank matrices in every performed algorithm and finding
index of Shuffle and Drazin for descriptor systems in [4, 12, 14, 16] and they are other excellence of method
in this paper. Also this method can be used for discrete-time descriptor linear systems by defining a suitable
state feedback.

This paper is organized as follows. Next section, presents converting the descriptor continuous-time
linear system to the standard continuous-time linear systems that the closed-loop matrix of the second
standard system, i.e., (10) has inverse of eigenvalues of closed-loop matrix in original system, i.e., descriptor
system (1). The PEVA problem for obtaining the derivative and propositional state feedbacks is displayed in
section 3. Section 4 proposes the similarity transformation for reassigning eigenvalues in PEVA. An
algorithm and numerical results are presented in section 5 by an algorithm with all proposed details in its
previous sections and numerical examples with the results of all steps of algorithm in it. Also convergence of
state and input vectors to balance point, i.e. zero, by their figures are showed. At final section, conclusion is
given.

The following notation will be used: R - the set of real numbers, € - the set of complex numbers,
jMM _ the set of NxM real matrices and M — 3M*1, AT - the transposed matrix of A, Q(A) - spectrum

of eigenvalues of the matrix A, I, - the unit matrix of size n.

2. Statement of the problem

Consider the descriptor linear time-invariant controllable system of the form
EX(t) = Ax(t) + Bu(t), (1)
where g ¢ R™N with rank (E) <n _xt)e R" is state vector and u(t)e R™ is input vector. It is assumed that
I<m<n, AcR™" and g RM™M are open-loop and input matrices respectively. Also X(0)=Xp is a
nonzero definite vector.
The aim is the eigenvalue assignment to design a derivative and propositional state feedback controller
matrix which produce a closed-loop system of (1) with a satisfactory response by shifting controllable poles
L={4,42,...An} from undesirable to desirable locations where 4j € € and 4j # 0 and are self-conjugate
complex numbers for i=12,...,n and by using the method in section 3 means PEVA we reassign p
eigenvalues which P <N while other eigenvalue of open-loop matrix unchanged.

As a brief displaying, we discuss the advantage of using the derivative and propositional state feedback
controller instead of the derivative state feedback.
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Derivative state feedback. Consider system (1) by derivative state feedback (2).
u(t) = Fiex(t) 2)
To establish the proposed results, consider the following assumptions:
I)rank(E|B) =n; IHrank(A)=n; Illl)rank(B)=m

It is clear that if assumption (I) holds, then there exists Fde such that [3]:

rank (E — BFge) =n. 3)
For Fde such that (3) holds, then from (2) it follows that (1) can be rewrite such as a standard linear system,
given by:
EX(t) = Ax(t) + BRgeX(t) = (E — BRge)X(t) = Ax(t)
therefore

X(t) = (E — BFge) ™ AX(t) 4)

which is well defined by (3).
It is clear that assumption (II) includes special systems.

Derivative and propositional state feedback. Consider system (1) by the derivative and propositional state
feedback (5)

u(t) = FgeX(t) + Fprx(t) (5)
To establish the proposed results, consider following assumptions:
rank(E[B) = n; I1)rank(B) = m
It is clear that if assumption (I) holds, then there exists Fge such that [3]:
rank(E —BFge) =n. (6)

For Fge such that (6) holds, then from (5) it follows that (1) can be rewrite such as a standard linear system,
given by:
EX(t) = AX(t) + BFgeX(t) + BFprX(t) = (E — BFge)X(t) = (A+ BFpr)X(t)
therefore
X(t) = (E — BFge) ™' (A+BFpr)X(D) (7)

which is well defined by (6).
Remark 1. When we use the derivative and propositional state feedback instead of the derivative state
feedback, we do not need the condition of being full rank of matrix A in system (1). It is an excellence for

using derivative and propositional state feedback. In continuation, we focus on derivative and propositional
state feedback (5).

As displayed for obtaining Fpr and Fge in (5), first we obtain the propositional state feedback Fpr by

using the method of partial eigenvalue assignment (in section 3) on system (8) which by using PEVA just we
need to reassign p eigenvalues and P =N and other eigenvalues unaltered.

g(t) = Ag(t) + Bv(t) ®
v(t) = Fpro(t)
It means we assign non-zero desired eigenvalues Q= {1, 47,..., tn} to the closed-loop of the system

(8).

Then we obtain the derivative state feedback Fge , using the method in section 3 on system (10) by
assigning ! :{,11_1,,12_1,__,’,1{1}, where 4j € € and 4; 20, i=12,...,n and by using PEVA just we
need to reassign p eigenvalues which P <N For calculating Fge see Theorem 1.

Lemma 1 Consider a matrix N ¢ ®™"M with rank(M) = n and the eigenvalues Aj,42,...,A4n . Then, the
eigenvalues of )\ —1 are the following: ,11_1,,12_1,”_,,1{1. [18, 19]

Remark 2 Consider that A =a+Dbi is an eigenvalue of M , then from Lemma 1
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a b

-1 -1 .
A =(a+bi)” = - i
az+b2 az+b2

is also an eigenvalue of pg 1.
Theorem 1. Define the matrices N and M as (9), desired set of QQ and matrix Fpr such that the pair of
(N,M) be controllable,

N =(A+BFpr) 'E.M =~(A+BFp) 'B 9)
Also let Fge be state feedback matrix, such that L_1 = {,11_1, /12_1:~--/1n_1} are the eigenvalues of the

closed-loop system

Z(t) = Nz(t) + Mw(t)
10
W(t) = FaeZ (10
where 4j€C and 4j #0, i=12,..,n are arbitrarily assigned. Then for this gained Fge , the desired

spectrum L ={4],4>,...,4n} is the eigenvalues of the controlled system (1) with derivative feedback (5) and
also, the condition (6) holds.
Proof. Considering that (N,M) is controlled, then we can find a state feedback matrix Fge such that the

controlled system with control law (10) given by
2(t) = (N + MFge)z(t) (11)

has poles equals to |__1 = {,11_1,,12_1 ,,ﬂn_l} . Now by (9) note that:

(N +MFge) ™" = ((A+BFpr) ' (E-BFge)) '
So
(N +MFge) ™! = (E - BFge) ™' (A+BFpr)
and from (11) and Lemma 1, the spectrum L ={4;,45,...,4n} is the eigenvalues of closed-loop matrix
(E - BFge )_I(AﬁL BFpr) which is closed-loop matrix of system (1) with feedback (5) as

mentioned in (4). Therefore (6) holds and the eigenvalue of closed-loop system (1) and feedback (5) are
equalto L=1{4,42,....4n} .

Remark 3. Consider system (1) via derivative and propositional state feedback (5) and system (10). As
displayed in proof of theorem 1 and (4), the closed-loop matrices of these two systems are

(E - BFge )_I(AﬁL BFpr) and (A+ BFpr)_l(E —BFge) respectively and it is clear that closed-loop matrices

are inverse of each other. So by assigning inverse of undesired eigenvalue, i.e., L_1 = {/11_1,/12_1,.../1,1_1} on

standard system (10) eigenvalues of descriptor system (1) via feedback (5) will been obtained as
L={4,4,.sAn}.

3. Partial eigenvalue assignment (PEVA)

In this section we will describe a method for finding the feedback Fpr and Fde in system (8) and (10).

At first, some definitions and theorems that we need them for the existence and uniqueness theorem for
multi-input and single-input PEVA problem are proposed. Next we bring the Existence and Uniqueness
Theorem and its proof and by the description of its proof, the PEVA method is displayed for obtaining the

propositional feedback I:pr in system (8). In similar to the description for finding Fpr may be used for
Fde , too. Also the theorem 5 for finding the feedback Fge in system (10) is proposed. Notice that in
practically, first we have to obtain the propositional feedback I:pr in system (8) which we need it for finding

the derivative feedback Fge in system (10).
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Theorem 2. [8] (Eigenvector Criterion of controllability). The standard system (8) or, equivalently, the
matrix pair (A, B) is controllable with respect to the eigenvalue 4 of A if yH B =0 forall Y#0 such that
yHe = ayH.
Definition 1. The standard system (8) or the matrix pair (A, B) is partially controllable with respect to the
subset /11,/12,---,/1p of the spectrum of A if it is controllable with respect to each of the eigenvalues
A, i=L..,p.

Definition 2. The standard system (8) or the matrix pair (A, B) is completely controllable if it is controllable

with respect to every eigenvalue of A.
Theorem 3. [7] (Existence and Uniqueness for Eigenvalue Assignment Problem). The eigenvalue

assignment problem for the pair (A, B) is solvable for any arbitrary set {#...., #4n} if and only if (A,B) is

completely controllable. The solution is unique if and only if the system is a single-input system (that is, if B
is a vector). In the multi-input case, there are infinitely many solutions, whenever a solution exists.
Theorem 4. (Existence and Uniqueness for partial eigenvalue assignment Problem). Let

A =diag {/11’/12’---a/1p»ﬂp+1a-~/1n} be the diagonal matrix containing the eigenvalues Aj,42,...,4q of
Ae€™N . Assume that the sets {41,42,...4p} and {Ap+1-4p+2.->4An} are disjoint. Let the eigenvalues
41,42, 4p to be changed to 41,42, Mp and the remaining eigenvalues stay invariant. Then the partial
eigenvalue assignment problem for the pair (A,B) is solvable for any choice of the closed-loop eigenvalues
M1, 2.5 Mp if and only if the pair (A,B) is partially controllable with respect to the set {A1,42,...4p}.

The solution is unique if and only if the system is a completely controllable single-input system. In the multi-
input case and in the single-input case when the system is not completely controllable, there are infinitely
many solutions, whenever a solution exists.

Proof. We first prove the necessity. Suppose the pair (A,B) is not controllable with respect to some

Aj, J=1..., p. Then there exists a vector Y #0 such that yH (A-4jH)=0 and yH M = 0. This means that

for any F, we have yH (A+BF -2j1)=0, which implies that 4j is an eigenvalue of A+ BF for every F,

and thus 4 j cannot be reassigned.
Next we prove the sufficiently. We need to prove that there exists a feedback matrix F which assigns
the eigenvalues in {41,42,....4p} arbitrarily while keeping all the other eigenvalues unaltered.

Let X ={X{,X2,..Xn} and Y =1{y1,Y2,...Yn} be, respectively, the right and left eigenvector matrix of A,
and let Y1 ={Y1.¥2,--Yp}. Since yH x —| and yH ax — o , then the partial controllability of the pair
(A,B) with respect to eigenvalues in {41,42,...4p} implies the partial controllability of the pair (A,Y H B)
with respect to same eigenvalues. Therefore, the pair ( AI’YIH B) is completely controllable because
{ﬂl,lz,...,ﬂp} M {lp+1’-~-=/1n} =0 which Al = diag(/ll,ﬂz,...,/ip) .

By Theorem 3, there exists a feedback matrix K such that the closed-loop matrix A +Y1H BK has the
desired eigenvalues #,---» 4p . Denote

F =Ky," (12)

Then the eigenvalues of closed-loop matrix are exactly as required. This is seen as follow:

(s s Aps1oendn = QA +Y T BK,0) =Y H (A+ B(K,0)Y T)X) = A+ B(kY,T))  (13)

Uniqueness of the solution in the single-input case that is completely controllable and the existence of
infinitely many solutions in the multi-input case follow directly from Theorem 3.

To complete the proof we need to show that infinitely many solutions to the PEVA problem are possible
when B is a vector (single-input case) and there exists an uncontrollable eigenvalue Ax for some K> p (that

is, the associated kM right eigenvector Yk is such that Yk Ha- A Yk H and Yk Hg_o ).
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Let F be a solution to the partial eigenvalue assignment problem. Denote the left and right eigenvectors
of the closed-loop matrix Ac = A+ BF by Y. and X.. Clearly ka A = ka (A+BF)= ka and thus

Yk is also the kth column of Y¢. Let F B = Yk H , where /8 is an arbitrary scalar. As in (13) we can show

that the eigenvalues A1, tp>Ap+ls-Ak—1>Ak+1>+4An of Ac remain unchanged by the application of
feedback Fﬁ. Furthermore, the eigenvalue Ak of Aq also remains unchanged by the feedback Fﬁ, since
the pair (Ag,B) is not controllable with respect to A by the necessity part of this theorem. Thus

Q(A+BF)=0O(A) =Q(A; +BFg) —(A+B(F + Ay 1)), (14)
showing that if F is a solution, so is F + gy, H foran arbitrary .

Remark 4. The theorem 4 for both of standard systems (8) and (10) may be used, so for easily F instead of
Fpr in system (8) is considered. Also we can use this theorem for finding Fge in system (10) by putting the

pair of (N,M) and Fgye instead of (A,B) and F respectively in theorem and the proof of 4. In continuous

the description of obtaining Fpr in system (8) is proposed and for finding Fge in system (10) the same

description is proposed in theorem 5.
Suppose that
Q(A) = {ﬂlq, ip N j’p-i—l ,....ﬂn} 5

which P is the number of undesired eigenvalues of €2(A) for the pair of (A,B) in system (8) and assume the
set S={u1,...Hp} be closed under complex conjugation which rank(B)=m<p . The aim of PEVA
problem is, looking for the derivative state feedback Fpr such that

Q(A+BFpr) ={p, 13- ttp, Aps1seAnt (15)
and also the sets {41,---Ap} and {4p+1.--An} be disjoint.
This means, finding Fpr which reassigns eigenvalues {41,...Ap} arbitrarily while keeping all the other

eigenvalues, {1p+1 ,-An ¥, unaltered.
First we need to obtain left eigenvector of matrix A as follow:
Y =(Y1,¥25---Yn) (16)
Then we put columns Y1, Y2.--Yp of Y in Y] that are associated columns by eigenvalues 41,.--Ap. So

yir Yizo - Vip
Yo1 Y22 - Y2
Yl = (yla YZ:---Yn) =l - . ;p (17)
Yni Yn2 -+ Ynp nxp
Now consider the pair of ( AI’YIH B) as follow:
4 0 0
. 0 A 0
Al = dlag(ﬂlaﬂQa"-aﬂ'p): : : (18)
0 o0 /1p oxp
Yir Y21 - Ynl by by ... by
H YI2 Y22 - Yn2 by by .. by
WBsS e 5 (19)
Yip Y2p -+ Ynp pxn bt bn2 - Bam Jim
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So the aim is, finding feedback Kpr in system

C H
G(t) = A;G(t)+ (Y] BV (1) (20)
V() =KprG(t)

such that the eigenvalues of the closed-loop of the system (20) be {#1----» #p} . At the end, for finding Fpr
in system (8), we have:

Theorem 5. Consider system (10) and define the matrices N, M as (9), desired set of Q and matrix Fpr
such that the pair of (N,M) be controllable. Also assume Q(N)= {ﬂl_l,ﬂq_l,/”tqﬂ_l,.../ln_l} ,
{/11_1 yeees ﬂq_l} be the sets of eigenvalues and undesired eigenvalues for open-loop matrix of this system and

the sets {,ul_l,...,,uq_l} , {ll_l,...,iq_l} and {/lq+1_1,...,/1n_1} be disjoint. If the pair (A’l,(Yl)’H M) as
(22) and (23),

yir Y21 - Yni bip biz ... bim
D" M = : : X1 : : ) (22)
41 oo
-1
o B 0 Al . 0
Al = dlag(il 172/2 1,"',2’q l) = : 2: .. : (23)
-1
0 0 A
4 Jaxq
and the state feedback Kge in system (24)
{Z(t) = MZO+O) MW D) o
W () = KgeZ(t)
be associated by the pair (N, M) in system (10) such that
YD) T MAD = (g g1
QN +MFge) = {4y s ttg s Aqat s A1}
which
Foe = Kae(1)'™ - (25)

then the eigenvalues of the descriptor system (1) via derivative and propositional state feedback (5) are:
{/Jl,,/Jq 7ﬂ'q+17"'7ﬂ‘n} .
Proof. The proof is clear by the theorems 1, 4 and lemma 1.

4. Similarity transformation of the state space

In this section we describe a method for finding feedbacks K pr and Kde in system (20) and (24). At
the first, we assign zero eigenvalues to these systems by @ pr and @ge respectively. Because of obtaining
the feedbacks Kpr and Kge are similar, so just the method for finding Kpr in system (20) is explained.

Consider the system (20) by defining A = A; e R PxP and B =Y1H B e R PXM as follow,
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{G(t) =AIG(1) + BV (1) (26)

V(®)=KprG(t)

instead of system (20) and display similarity transformation on it easier.

To obtain the derivative feedback matrix K pr in system (20) or equivalently system (26), consider the
state transformation

G(t)=TG(t) (27)
where T can be obtained by elementary similarity operations as described in [18, 19]. Substituting (27) into
first relationship of (26) yields
Gty =T IATGt)+T "BV (t)
It is noted that the transformation matrix T is invertible. In this way,

A =T IAT.B =T B (28)
are in a compact canonical form know as vector companion form [18, 19]:
Al:{'p—m » Op-m m} ’Bl{op—m m} @
TApxp »Apxm

Here R is a MX P matrix and Sp is a MXM upper triangular matrix. Note that the Kronecker
invariants of the pair (A;,B;) are regular if the difference between any of them is not greater than one. If
Kronecker invariants of the pair of (Ay,By) are regular, then Kl and I§1 are always in the above form [18].
In the case of irregular Kronecker invariants, some rows of |p—m in A are displaced [19]. (For more
details about Kronecker invariants, see [17])

The state feedback matrix which assigns all the eigenvalues to zero for the transformed pair (Zq, I§1) is
then chosen as

® pr = -89 'Ry (30)

which results in the primary state feedback matrix for the pair (A,B;) defined as

The transformed closed-loop matrix
Lo =A+BPpr (32)
assumes a compact Jordan form with zero eigenvalues
Fo{, . 0 mm} (33)
p- ? p-—m, pxp
Theorem 6. Let D be a block diagonal matrix in the form
D 0 - 0
0 Dy -~ O
D= . .
0O o0 --- D
kJpxp

where each Dj, j =12....,Kis either of the form

D | % J}
: {—ﬂj @

(to designate the complex conjugate eigenvalues @ j + iB i)
or in case of real eigenvalues
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If such that diagonal matrix D with self conjugate eigenvalue spectrum is added to the transformed
closed-loop matrix, 1:0 , then the eigenvalues of the resulting matrix is the eigenvalues in the spectrum.
Proof. The primary compact Jordan form in the case of regular Kronecker invariants is in the form (33). The
sum of Ty with D has the form:

|‘~|=l:0+D
Dp 0 - 0
O, 0 Dy - 0
Z{Ip_m ,opp_m,m} i IR
PP 0 0 - Dy
pxp
D O 0 0 ]
0 D 0 0 0
. m
0 0 - D 0 e 0
i (34)
iy 0 0 Dy 0
o 0 0 p—m
0 - Iy 0 0 - Dg

- “4pxp

And also lg,s=12,...,r is the unit matrix of size 2 in case P =M is even. In case P~M is odd only
one |lg takes the form of unit matrix of size one.

By expanding det(H — A1) along the first row it is obvious that the eigenvalues of [§ are the same as
the eigenvalues of D. For the case of irregular Kronecker invariants [19] only some of the unit columns of
I p—m are displaced, since the unit elements are always below the main diagonal, the proof applies in the

same manner.
Therefore the closed-loop system matrix (34) becomes (35). Simple elementary similarity operations

~ R,
H, =
{Ip—m ’ Op_mam:|

(35)
Thus the primary feedback matrix Kpr which gives rise to the assignment of eigenvalues {4,...Ap} to

can be used to obtain the matrix H; from {§ such that

the system (20) becomes
Kpr =®pr + S0 'RT ™! (36)

5. Algorithm and numerical experiment

In this section, we present an algorithm to obtain the solution of system (1) by the use of partial
eigenvalue problem in section 3 based on assigning eigenvalue problem in section 4. Then by an example,
we show the simplicity of our method.

Object. Assign desired eigenvalues {z!...., yp_l} and {4,-..Aq} to the systems (20) and (24) and find
the matrices Kpr and Kge respectively such that the spectrum of closed-loop system (1) via derivative and
propositional state feedback (5), i.e., (E — BFde)_l(A+ BFpr) in(7)be {u),e s ips Ap o Ant

Input. The matrices A,B and E .
Main steps:

Step 1. Obtain Fpr in system (8).
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Step 1.1. Calculate the eigenvalues and the left eigenvector of A and then put associated columns {41,-...Ap}
of left eigenvector A in Y] by (16) and (17).

Step 1.2. Obtain the pair (AlaYlH B) from (18) and (19).

Step 1.3. Compute P pr and K pr by similarity transformation similar to (27) until (36).

Step 1.4. Compute Fpr from (21) and the results of step 1.3.

Step 2. Obtain Fge in system (10).
Step 2.1. Calculate the matrices N and M from (9).
Step 2.2. Repeat steps 1.1 until 1.3 and obtain Kge and Fge by (27) until (36) by using N,M, ®Pge ,and Kge

instead of A, B, @ pr, and Kpr.

Step 2.3. Compute Fge from (25) and the results of step 2.2.

Step 3. Input gained Fpr and Fge in steps 1, 2 in (5) and obtain U(t) of system (1).

Step 4. Obtain X(t) by putting U(t), Fpr, and Fge are gained from steps 1, 2 and 3 in (7).
Example 1. Consider the descriptor system (1) with following matrices which rank(E)=9<10,

05 4 633 6265 8
0-7-68 590 8 1 —4 -9
062 91 3 5 -90 0 1
01 0 0 0 2 7 8 2 7 -9
A:0554—912588 B:6
03 2 5 2 3 42 97| ° o °
00 96 535 7 6 2 2
01 97 910 2 76 5
01 3 6 1 4 4 92 8 -9
0607106 6 5 llyo [“90
-1 7 4 6 3 3 6 2 -6 0]
-7 4 6 3 3 6 2 6 0
2 6 2 3 1 3 -7 3 0 3
-2 1 0 0 0 2 7 0 2 0
E:3—7—74312—703
-2 3 2 -7 2 3 4 2 3 -7
1 0 3 6 -73 7 1 6 0
4 1 3 7 3 1 0 2 7 1
-4 1 3 6 1 4 4 3 2 -7
(00 0 0 0 0 0 0 0 0 |44

Step 1:
Q(A)={-13.06,-6.46£10.221,-547+£3.111,0,2.35,6.38 £ 3.41,20.81}

Therefore p = 5 and by considering

[20.81 0 0 0 0 8.91

0 6.38+3.4i 0 0 0 7.99-3.19i

Al=| 0 0 638-34i 0 0|, Y,"B=|7.99+3.19i
0 0 0 235 0 8.56

0 0 0 0 0] 1005 |
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the matrix @ pr which assign zero eigenvalue to the system (20) is obtained as:
®pr =[-5.19 057+0.17i 0.57-0.17i 0 0]

and by reassigning {~20,-10+5i,-10,-5} instead of {0,2.35,6.38+3.4i,20.81} , the matrix feedback Kpr is

obtained as:
Kpr =[-42.02 19.77-44.03i 19.77+44.03i 34.73 0]

The state feedback matrix Fpr for the system (8) is calculated by,
H
=[-0.59 -1.86 19.56 1.3 21.16 16.06 37.44 —11.86 14.42 13.72]

Now we have:
QA+ BFpr) ={-20,-13.06,-10+5i,-10,-6.46 +10.22i,-5.47 +3.11i,-5}

Step 2:
1.17 -16.23 -20.28 47.75 -32.08 395 2416 1037 64 -7.73
-0.13 03 -031 098 -039 031 097 -022 -0.16 1.66
-0.12 -0.84 -0.67 -0.71 0 -027 -029 -0.59 -048 -1.15

-0.07 -0.84 -024 -043 -025 -023 —0.08 —-0.06 021 -1.13
-0.15 037 052 076 -01 059 079 0.7 0 -0.04
-049 -024 -03 -235 -1.06 -127 -099 0.15 -038 274/
031 -02 -05 077 -036 052 023 -0.13 04 1.3
-0.05 -036 -024 -094 -0.15 -04 002 -02 -0.1 -0.72
008 -033 -0.15 095 -021 01 023 -004 -0.1 029
| 005 092 093 093 109 086 066 044 032 046 |
[1.67]
0

S O O O O o o O

O(N) = {~1.28,-1.09+3.78i,-0.78,-0.43,0, 0.35+0.351,0.54,2.81
Therefore g = 5 and by considering

[2.81 0 0 0 0 [—0.06 |

0 0.35-035 0 0 0 -0.02

Aj=| 0 0 0.54 0 ol, vp'Hm=|-0.02
0 0 0 0.35-0.35i 0 -0.02

| 0 0 0 0 0] | -0.01 |

the matrix ®@ge which assign zero eigenvalue to the system (24) is obtained as:

Dge =[72.62 —3.01-2.68i —11.61 —3.01+2.68i 0]
and by reassigning {-0.25,-0.2,-0.16,-0.12 0.09i} instead of {0,0.35% 0.35i,0.54,2.81} , the matrix
feedback Kye is obtained as:

Kge =[97.76 1.65-12.96i —43.36 1.65+12.96i 0.02]
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The state feedback matrix Fge for the system (10) is calculated by,

=[—2.94 30.03 28.57 -29.82 4225 -2398 -18.54 7.48 -22.55 21.1]

Now we have:

Steps 3 and 4:

H
Fae = Kde (Y1)

Q((E - BFge) ' (A+BFpr)) =Q((N + MFge) 1)
={-6,-5+4i,-5,—4,-2.3,-1.27,-0.77,-0.07 £ 0.24i}

Figures (1) and (2) show simulation result when

XO=[O.001 —-0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001

state response

D 2 T L} L} L} L} I I
0.15} 2T g ___% -
o | £ N S |
- _//F_“\\Q -
005 : N - | 4
o ”r I ’-/____ \H“'\\ *10
= D T SN s
= O — L s
. \\ i
- 005} 5 e -
= P 4 i
01}k ~. . A
015} -
02} -
025 1 1 1 1 1 1 1 1 1
10 20 30 40 S0 60 70 B8O S0 100
time t
Fig. 1: State vector converge to zero in example 1
input response
0.3 T T T
S
[n] 1 ;3 Z“IEI 3IEI 4;3 5;3 Ei;] 7IEI BIEI Q;II 100

time t

Fig. 2: Input vector converge to zero in example 1

6. Conclusion

0.001 —0.001]" .

231

A method for finding the solution of descriptor continuous-time linear system in form of (1) has been
considered. First by the use of the derivative and propositional state feedback (5) displayed system has been
converted to two standard continuous-time linear systems (8) and (10) and it explains the advantages of this
method, because working with the standard systems is much easier than the descriptor mode and also
because of using the derivative and propositional state feedback we do not need the assumption of being full
rank of open-loop matrix in standard systems. Second the PEVA method based on similarity transformation
on standard systems has been used to obtain feedbacks and in systems (8) and (10) respectively. Third the
state and input vectors in (1) has been obtained by (5) and (7) and illustrated by a numerical example and
showed the input and state vectors converge to balance point (zero).
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