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Abstract. A method for solving the descriptor continuous-time linear system is focused. For easily, it is 
converted to two standard continuous-time linear systems by the definition of a derivative and  propositional 
state feedback. Then partial eigenvalue assignment is used for obtaining the derivative and propositional state 
feedbacks and solving the standard systems. In partial eigenvalue assignment, just a part of the open loop 
spectrums of two standard linear systems are reassigned, while leaving the rest of the spectrum invariant and 
for reassigning, similarity transformation is used. Using partial eigenvalue assignment is easier than using 
eigenvalue assignment. Because by partial eigenvalue assignment, size of  matrices and state and input 
vectors are decreased and stability is kept, too. It is worthy to mention that eigenvalues of closed-loop matrix 
of original system, i.e., descriptor and second converted system are inverse of each other. Also concluding 
remarks and an algorithm are proposed to the descriptions be obvious. At the end, convergence of state and 
input vectors in the descriptor system to balance point (zero) are showed by figures in a numerical example. 

Keywords: descriptor system, derivative and propositional state feedback, partial eigenvalue assignment, 

converge to balance point. 

1. Introduction  
Descriptor systems that are also called singular systems are more general and precise than a normal 

model to depict a dynamical physical. Applications of descriptor systems can be found in various fields such 
as artificial neuron networks, circuits systems, chemical processes, economics, biologic, power, modeling of 
mechanical multi body systems and etc. [6, 10, 11, 20, 25, 28] 

Some of the first fundamental works on eigenstructure assignment in descriptor linear systems were 
established in the 1980s by a number of researchers, such as Cobb (1981) [5], Armentano (1984) [1], 
Fletcher (1986) [9], Ozcaldiran and Lewis (1987) [21].  

In recent years there are many subjects are related to these problems like switched descriptor systems 
and eigenvalue assignment in state feedback control for uncertain systems [22, 27]. Also Karbassi et al. 
worked on non-linear state feedback controllers like in [19]. 

In the available literature on descriptor systems, there are two kinds of stabilization problems for 
singular systems. One consists in designing a state or output feedback controller in such a way that the 
closed-loop system is regular, impulse-free, and stable or equivalently admissible. The other is to design a 
state or output feedback controller in order to make the closed-loop system regular and stable. Concerning 
the stability analysis and the stabilization problem, a number of approaches assuming or not assuming the 
regularity of the descriptor system have been proposed in the literature let us quote for instance [2, 6, 26] 
among those assuming the regularity and [6, 26] without assuming the regularity. Also positivity and 
stability of linear descriptor systems have been investigated in [13, 15] for systems with regular pencils. 

Many practical applications such as the design of large and sparse structures, electrical networks, power 
systems, computer networks, etc., give rise to very large and sparse problems and the conventional numerical 
methods for EVA problem do not work well. Furthermore, in the most of these applications only a small 
number of eigenvalues, which are responsible for instability and other undesirable  eigenvalues, need to be 
reassigned. Clearly, a complete EVA, in case when only a few eigenvalues are bad, does not make sense. 
This consideration gives rise to the partial eigenvalue assignment (PEVA) problem for the linear control 
system such that undesirable eigenvalues are reassigned and other eigenvalues unaltered. An explicit solution 
to the partial eigenvalue problem by using one of orthogonality relations between eigenvectors for matrix 
polynomial is considered in [23]. The conditions for existence and uniqueness of the solution for the single-
input problem were given in [24] and for multi-input were presented in [8]. 
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In this paper, the stability of descriptor continuous-time linear systems will be investigated. Our method 
is mixed of PEVA, EVA by similarity transformation and a useful method for converting the descriptor 
linear system to the standard linear systems. First, the descriptor continuous-time linear system (1) is 
converted to the standard continuous-time linear systems (8) and (10) by the definition of the derivative and 
propositional state feedback (5) that are calculated by the PEVA method (section 3). In other hand, we need 
to reassign undesired eigenvalues of open-loop spectrums in standard systems with smaller sizes of matrices 
such that other eigenvalues unchanged. Also a theorem for existence and uniqueness solution for PEVA in 
multi-input is represented. Then feedbacks in descriptor system are obtained by an easy relationship between 
these feedbacks and gained feedbacks by PEVA from (21). It is important to say for reassigning undesired 
eigenvalues, similarity transformation (section 4) is used that is a simple method with high accuracy. 

As mentioned it is clear that our method has some advantages that solving the descriptor continuous-
time linear systems will be more and more easier. The first advantage is, converting descriptor continuous-
time linear system to standard continuous-time linear systems, because working on standard systems is easier 
than descriptor systems. Also we do not need the assumption of being full rank open-loop matrix in standard 
systems because of using derivative and propositional state feedback [3]. EVA have been an applicable 
method for finding the solution in standard systems and their stability, but by PEVA just by reassigning a 
part of open-loop matrix spectrum in standard systems while keeping other eigenvalues unvariant, their 
stability are kept. In PEVA we decrease the size of matrices and state and input vectors, it is obvious that 
calculating is more easily than EVA and obtaining state feedback is so comfortable by state feedback 
governed in PEVA and they are other advantages of our method. Therefore the state and input vectors in the 
original system, i.e., descriptor continuous-time linear system, converge to balance point and we show this 
by figures in our example. It is worthy to mention that we do not need some assumptions like no having 
eigenvalues near zero and some criteria on some vectors and being distinct eigenvalues by orthogonality 
relations for PEVA in [23] or dealing with full row rank matrices in every performed algorithm and finding 
index of Shuffle and Drazin for descriptor systems in [4, 12, 14, 16] and they are other excellence of method 
in this paper. Also this method can be used for discrete-time descriptor linear systems by defining a suitable 
state feedback. 

This paper is organized as follows. Next section, presents converting the descriptor continuous-time 
linear system to the standard continuous-time linear systems that the closed-loop matrix of the second 
standard system, i.e., (10) has inverse of eigenvalues of closed-loop matrix in original system, i.e., descriptor 
system (1). The PEVA problem for obtaining the derivative and propositional state feedbacks is displayed in 
section 3. Section 4 proposes the similarity transformation for reassigning eigenvalues in PEVA. An 
algorithm and numerical results are presented in section 5 by an algorithm with all proposed details in its 
previous sections and numerical examples with the results of all steps of algorithm in it. Also convergence of 
state and input vectors to balance point, i.e. zero, by their figures are showed. At final section, conclusion is 
given.  

The following notation will be used:   - the set of real numbers, C - the set of complex numbers, 
mn  - the set of mn  real matrices and 1 mm , TA  - the transposed matrix of A, )(A  -  spectrum 

of eigenvalues of the matrix A, nI  -  the unit matrix of size n. 

2. Statement of the problem     
Consider the descriptor linear time-invariant controllable system of the form 

                                                              )()()( tButAxtxE  ,                                                          (1) 

where nnRE   with nErank )( , nRtx )(  is state vector and mRtu )(  is input vector. It is assumed that 
nm 1 , nnRA   and mnRB   are open-loop and input matrices respectively. Also 0)0( xx   is a 

nonzero definite vector. 
The aim is the eigenvalue assignment to design a derivative and propositional state feedback controller 

matrix which produce a closed-loop system of (1) with a satisfactory response by shifting controllable poles 
},...,,{ 21 nL   from undesirable to desirable locations where i C  and 0i  and are self-conjugate 

complex numbers for ni ,...,2,1  and by using the method in section 3 means PEVA we reassign p 
eigenvalues which np   while other eigenvalue of open-loop matrix unchanged. 

As a brief displaying, we discuss the advantage of using the derivative and propositional state feedback 
controller instead of the derivative state feedback. 
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Derivative state feedback. Consider system (1) by derivative state feedback (2). 
 )()( txFtu de                                                                           (2) 

To establish the proposed results, consider the following assumptions: 
;)() nBErankI       ;)() nArankII      mBrankIII )()  

It is clear that if assumption (I) holds, then there exists deF    such that [3]: 
.)( nFBErank de                                                                   (3) 

For deF   such that (3) holds, then from (2) it follows that (1) can be rewrite such as a standard linear system, 
given by: 

)()()()()()( tAxtxFBEtxFBtAxtxE dede    
therefore 

)()()( 1 tAxFBEtx de
                                                        (4) 

which is well defined by (3). 
 

It is clear that assumption (II) includes special systems. 
 

Derivative and propositional state feedback. Consider system (1) by the derivative and propositional state 
feedback (5) 

)()()( txFtxFtu prde                                                        (5) 

To establish the proposed results, consider following assumptions: 
;)() nBErankI           mBrankII )()  

It is clear that if assumption (I) holds, then there exists deF  such that [3]: 

                                                                     .)( nBFErank de                                                           (6) 

For deF  such that (6) holds, then from (5) it follows that (1) can be rewrite such as a standard linear system, 
given by: 

)()()()()()()()( txBFAtxBFEtxBFtxBFtAxtxE prdeprde    

therefore 

                                           )()()()( 1 txBFABFEtx prde                                                (7) 

which is well defined by (6). 
Remark 1. When we use the derivative and propositional state feedback instead of the derivative state 
feedback, we do not need the condition of being full rank of matrix A in system (1). It is an excellence for 
using derivative and propositional state feedback. In continuation, we focus on derivative and propositional 
state feedback (5). 

As displayed for obtaining prF  and deF  in (5), first we obtain the propositional state feedback prF  by 

using the method of partial eigenvalue assignment (in section 3) on system (8) which by using PEVA just we 
need to reassign p eigenvalues and np   and other eigenvalues unaltered. 

                                                









)()(

)()()(

tgFtv

tBvtAgtg

pr


                                                       (8) 

It means we assign non-zero desired eigenvalues },...,,{ 21 n  to the closed-loop of the system 
(8). 

Then we obtain the derivative state feedback deF , using the method in section 3 on system (10) by 

assigning },...,,{ 11
2

1
1

1   nL  , where i C  and 0i , ni ,...,2,1  and by using PEVA just we 

need to reassign p eigenvalues which np  . For calculating deF  see Theorem 1. 

Lemma 1 Consider a matrix nnM  with rank(M) = n and the eigenvalues n ,...,, 21 . Then, the 

eigenvalues of 1M  are the following: 11
2

1
1 ,...,, 

n . [18, 19] 

Remark 2 Consider that bia   is an eigenvalue of  M , then from Lemma 1 
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i
ba

b

ba

a
2222

1-1- bi)(a





  

is also an eigenvalue of 1M . 

Theorem 1. Define the matrices N and M as (9), desired set of   and matrix prF  such that the pair of 

),( MN  be controllable, 

                                             BBFAMEBFAN prpr
11 )(,)(                                           (9) 

Also let deF  be state feedback matrix, such that },...,{ 11
2

1
1

1   nL   are the eigenvalues of the 

closed-loop system 

                                                                 









tdezFtw

tMwtNztz

()(

)()()(
                                                             (10) 

where Ci   and 0i , ni ,...,2,1  are arbitrarily assigned. Then for this gained deF , the desired 

spectrum },...,,{ 21 nL   is the eigenvalues of the controlled system (1) with derivative feedback (5) and 
also, the condition (6) holds. 
Proof. Considering that ),( MN  is controlled, then we can find a state feedback matrix deF  such that the 
controlled system with control law (10) given by 

)()()( tzMFNtz de                                                             (11) 

has poles equals to },...,{ 11
2

1
1

1   nL  . Now by (9) note that: 

111 ))()(()(   deprde BFEBFAMFN , 

So 

)()()( 11
prdede BFABFEMFN    

and from (11) and Lemma 1, the spectrum },...,,{ 21 nL   is the eigenvalues of closed-loop matrix 

)()( 1
prde BFABFE    which is closed-loop matrix of system (1) with feedback (5) as 

mentioned in (4). Therefore (6) holds and the eigenvalue of closed-loop system (1) and feedback (5) are 
equal to },...,,{ 21 nL  .      
Remark 3. Consider system (1) via derivative and propositional state feedback (5) and system (10). As 
displayed in proof of theorem 1 and (4), the closed-loop matrices of these two systems are 

)()( 1
prde BFABFE    and )()( 1

depr BFEBFA    respectively and it is clear that closed-loop matrices 

are inverse of each other. So by assigning inverse of undesired eigenvalue, i.e., },...,{ 11
2

1
1

1   nL   on 

standard system (10) eigenvalues of descriptor system (1) via feedback (5) will been obtained as 
},...,,{ 21 nL  . 

3. Partial eigenvalue assignment (PEVA) 

In this section we will describe a method for finding the feedback prF  and deF  in system (8) and (10). 

At first, some definitions and theorems that we need them for the existence and uniqueness theorem for 
multi-input and single-input PEVA problem are proposed. Next we bring the Existence and Uniqueness 
Theorem and its proof and by the description of its proof, the PEVA method is displayed for obtaining the 
propositional feedback prF  in system (8). In similar to the description for finding prF  may be used for 

deF , too. Also the theorem 5 for finding the feedback deF  in system (10) is proposed. Notice that in 

practically, first we have to obtain the propositional feedback prF  in system (8) which we need it for finding 

the derivative feedback deF  in system (10). 
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Theorem 2. [8] (Eigenvector Criterion of controllability). The standard system (8) or, equivalently, the 

matrix pair ),( BA  is controllable with respect to the eigenvalue   of A  if 0ByH  for all 0y  such that 

HH yBy  . 

Definition 1. The standard system (8) or the matrix pair ),( BA  is partially controllable with respect to the 

subset p ,...,, 21  of the spectrum of A if it is controllable with respect to each of the eigenvalues 

pjj ,...,1,  . 

Definition 2. The standard system (8) or the matrix pair ),( BA  is completely controllable if it is controllable 
with respect to every eigenvalue of A. 
Theorem 3. [7] (Existence and Uniqueness for Eigenvalue Assignment Problem). The eigenvalue 
assignment problem for the pair ),( BA  is solvable for any arbitrary set },...,{ 1 n  if and only if ),( BA  is 
completely controllable. The solution is unique if and only if the system is a single-input system (that is, if B 
is a vector). In the multi-input case, there are infinitely many solutions, whenever a solution exists. 
Theorem 4. (Existence and Uniqueness for partial eigenvalue assignment Problem). Let 

},...,,...,,{ 121 nppdiag    be the diagonal matrix containing the eigenvalues n ,...,, 21  of 

nnCA   . Assume that the sets },...,,{ 21 p  and },...,,{ 21 npp    are disjoint. Let the eigenvalues 

p ,...,, 21  to be changed to p ,...,, 21  and the remaining eigenvalues stay invariant. Then the partial 

eigenvalue assignment problem for the pair ),( BA  is solvable for any choice of the closed-loop eigenvalues 

p ,...,, 21  if and only if the pair ),( BA  is partially controllable with respect to the set },...,,{ 21 p . 

The solution is unique if and only if the system is a completely controllable single-input system. In the multi-
input case and in the single-input case when the system is not completely controllable, there are infinitely 
many solutions, whenever a solution exists. 
Proof. We first prove the necessity. Suppose the pair ),( BA  is not controllable with respect to some 

pjj ,...,1,  . Then there exists a vector 0y  such that 0)(  IAy j
H   and 0MyH . This means that 

for any F, we have 0)(  IBFAy j
H  , which implies that j  is an eigenvalue of BFA  for every F, 

and thus j cannot be reassigned. 

Next we prove the sufficiently. We need to prove that there exists a feedback matrix F which assigns 
the eigenvalues in },...,,{ 21 p  arbitrarily while keeping all the other eigenvalues unaltered. 

Let },...,{ 21 nxxxX   and },...,{ 21 nyyyY   be, respectively, the right and left eigenvector matrix of A, 

and let },...,{ 211 pyyyY  . Since IXY H   and AXY H , then the partial controllability of the pair 

),( BA  with respect to eigenvalues in },...,,{ 21 p  implies the partial controllability of the pair ),( BY H  

with respect to same eigenvalues. Therefore, the pair ),( 11 BY H  is completely controllable because 

0},...,{},...,,{ 121   npp   which ),...,,( 211 pdiag  . 

By Theorem 3, there exists a feedback matrix K such that the closed-loop matrix BKY H
11   has the 

desired eigenvalues p ,...,1 . Denote 

                                                                            HKYF 1                                                                    (12) 

Then the eigenvalues of closed-loop matrix are exactly as required. This is seen as follow: 

))0,((},....,,...,{ 11 KBY H
npp   )))0,(((( XYKBAY HH  ))(( 1

HKYBA     (13) 

Uniqueness of the solution in the single-input case that is completely controllable and the existence of 
infinitely many solutions in the multi-input case follow directly from Theorem 3. 

To complete the proof we need to show that infinitely many solutions to the PEVA problem are possible 
when B is a vector (single-input case) and there exists an uncontrollable eigenvalue k  for some pk   (that 

is, the associated thk  right eigenvector ky  is such that H
kk

H
k yAy   and 0By H

k ). 
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Let F be a solution to the partial eigenvalue assignment problem. Denote the left and right eigenvectors 

of the closed-loop matrix BFAAc   by cY  and cX . Clearly H
kk

H
kc

H
k yBFAyAy  )(  and thus 

ky  is also the thk  column of cY . Let H
kyF   , where   is an arbitrary scalar. As in (13) we can show 

that the eigenvalues nkkpp  ,...,,,....,,..., 1111  of cA  remain unchanged by the application of 

feedback F . Furthermore, the eigenvalue k  of cA  also remains unchanged by the feedback F , since 

the pair ),( BAc  is not controllable with respect to k  by the necessity part of this theorem. Thus 
 

                         )()()( BFAABFA cc  )),(( H
kyFBA                                     (14) 

showing that if F  is a solution, so is H
kyF   for an arbitrary  .                                                                       

Remark 4. The theorem 4 for both of standard systems (8) and (10) may be used, so for easily F  instead of 

prF  in system (8) is considered. Also we can use this theorem for finding deF  in system (10) by putting the 

pair of ),( MN  and deF  instead of ),( BA  and F respectively in theorem and the proof of 4. In continuous 

the description of obtaining prF  in system (8) is proposed and for finding deF  in system (10) the same 

description is proposed in theorem 5. 
 Suppose that  

},....,,...,{)( 11 nppA   , 

which p  is the number of undesired eigenvalues of )(A for the pair of ),( BA  in system (8) and assume the 

set },...,{ 1 pS   be closed under complex conjugation which pmBrank )( . The aim of PEVA 

problem is, looking for the derivative state feedback prF  such that 

 
                                                  },....,...,,{)( 121 nppprBFA                                             (15) 

and also the sets },....{ 1 p  and },....{ 1 np   be disjoint. 

This means, finding prF  which reassigns eigenvalues },....{ 1 p  arbitrarily while keeping all the other 

eigenvalues, },....{ 1 np   , unaltered. 

First we need to obtain left eigenvector of matrix A as follow: 
                                                                      ),...,( 21 nyyyY                                                                (16) 

Then we put columns pyyy ,..., 21  of Y  in 1Y  that are associated columns by eigenvalues p ,....1 . So 

                                           

pnnpnn

p

p

n

yyy

yyy

yyy

yyyY





























21

22221

11211

211
...

),...,(                                         (17) 

Now consider the pair of ),( 11 BY H  as follow: 

                                    

ppp

pdiag






































00

00

00

),...,,(
2

1

211                                            (18) 

                           

mnnmnn

m

m

npnppp

n

n

H

bbb

bbb

bbb

yyy

yyy

yyy

BY
























































21

22221

11211

21

22212

12111

1
......

                             (19) 
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So the aim is, finding feedback prK  in system 

                                                     









)()(

)()()()( 11
tGKtV

tVBYtGtG

pr

H
                                                            (20) 

 
such that the eigenvalues of the closed-loop of the system (20) be },...,{ 1 p . At the end, for finding prF  

in system (8), we have: 

                                                                    H
prpr YKF 1 .                                                                   (21) 

Theorem 5. Consider system (10) and define the matrices N, M as (9), desired set of   and matrix prF  

such that the pair of ),( MN be controllable. Also assume },...,,{)( 11
1

11
1




 nqqN  , 

},...,{ 11
1


q  be the sets of eigenvalues and undesired eigenvalues for open-loop matrix of this system and 

the sets },...,{ 11
1


q , },...,{ 11

1


q  and },...,{ 11
1


 nq   be disjoint. If the pair ))(,( 11 MY H  as 

(22) and (23), 
 

                              

mnnmnn

m

m

nqnqqq

n

n

H

bbb

bbb

bbb

yyy

yyy

yyy

MY


































































21

22221

11211

21

22212

12111

1
......

)( ,                     (22) 

                              

qqq

qdiag
































1

1
2

1
1

11
2

1
11

00

00

00

),...,,(
















                              (23) 

and the state feedback deK  in system (24) 

                                                      









)()(

)())(()()( 11
tZKtW

tWMYtZtZ

de

H
                                                     (24)                   

be associated by the pair ),( MN in system (10) such that 

},...,{),)(( 11
111

 q
H MY  , 

},...,,,...,{)( 11
1

11
1




 nqqdeMFN   

which 

                                                                       H
dede YKF )( 1  ,                                                             (25) 

then the eigenvalues of the descriptor system (1) via derivative and propositional state feedback (5) are: 
},...,,,...,{ 11 nqq   . 

Proof. The proof is clear by the theorems 1, 4 and lemma 1.   

4. Similarity transformation of the state space 

In this section we describe a method for finding feedbacks prK  and deK  in system (20) and (24). At 

the first, we assign zero eigenvalues to these systems by pr  and de  respectively. Because of obtaining 

the feedbacks prK  and deK  are similar, so just the method for finding prK  in system (20) is explained. 

Consider the system (20) by defining ppA  11  and mpH BYB  11  as follow, 
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







)()(

)()()( 11
tGKtV

tVBtGtG

pr


                                                               (26) 

instead of system (20) and display similarity transformation on it easier. 
To obtain the derivative feedback matrix prK  in system (20) or equivalently system (26), consider the 

state transformation 
                                                                     )(

~
)( tGTtG                                                                         (27) 

where T  can be obtained by elementary similarity operations as described in [18, 19]. Substituting (27) into 
first relationship of (26) yields 

)()(
~

)(
~

1
1

1
1 tVBTtGTATtG    

It is noted that the transformation matrix T  is invertible. In this way, 

                                                     TATA 1
1

1
~  , 1

1
1

~
BTB                                                                   (28) 

are in a compact canonical form know as vector companion form [18, 19]: 

        
ppmmpmpI

R
A












,

0
1 0,

~
,

mpmmp

S
B












,

0
1 0

~
                       (29) 

Here 0R  is a pm  matrix and 0S  is a mm  upper triangular matrix. Note that the Kronecker 

invariants of the pair ),( 11 BA  are regular if the difference between any of them is not greater than one. If 

Kronecker invariants of the pair of ),( 11 BA  are regular, then 1
~
A  and 1

~
B  are always in the above form [18]. 

In the case of irregular Kronecker invariants, some rows of mpI   in 1
~
A  are displaced [19]. (For more 

details about Kronecker invariants, see [17]) 
The state feedback matrix which assigns all the eigenvalues to zero for the transformed pair )

~
,

~
( 11 BA  is 

then chosen as 

                                                                         0
1

0
~

RSpr
                                                              (30) 

 
which results in the primary state feedback matrix for the pair ),( 11 BA  defined as 

 

                                                                          1~  Tprpr                                                              (31) 

The transformed closed-loop matrix 

                                                                           prBA  ~~~~
110                                                           (32) 

assumes a compact Jordan form with zero eigenvalues 

                                                                      
ppmmpmp

pm
I












,

,
0 0,

0~
                                      (33) 

Theorem 6. Let D  be a block diagonal matrix in the form 

ppkD

D

D

D






























00

00

00

2

1

 

where each kjD j ,...,2,1,  is either of the form 












jj

jj
jD




 

(to designate the complex conjugate eigenvalues jj i  ) 

or in case of real eigenvalues 
 jj dD   
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If such that diagonal matrix D  with self conjugate eigenvalue spectrum is added to the transformed 
closed-loop matrix, 0

~  , then the eigenvalues of the resulting matrix is the eigenvalues in the spectrum. 

Proof. The primary compact Jordan form in the case of regular Kronecker invariants is in the form (33). The 
sum of 0

~  with D  has the form: 

DH  0
~~

 

ppk
ppmmpmp

pm

D

D

D

I








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





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









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



00

00

00

0,

0 2

1

,

,
 

ppkr

l

l

DI

DI

D

D

D


































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



000
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000

0000

0000

0000

11

2

1
























mp

m



                                     (34) 

And also rsIs ,...,2,1,   is the unit matrix of size 2 in case mp   is even. In case mp   is odd only 

one sI  takes the form of unit matrix of size one. 

By expanding )
~

det( IH   along the first row it is obvious that the eigenvalues of H
~  are the same as 

the eigenvalues of D. For the case of irregular Kronecker invariants [19] only some of the unit columns of 

mpI   are displaced, since the unit elements are always below the main diagonal, the proof applies in the 

same manner.  
Therefore the closed-loop system matrix (34) becomes (35). Simple elementary similarity operations 

can be used to obtain the matrix H
~

 from H
~  such that 

                                                        









 mmpmpI

R
H

,0,
~ 
                     

(35) 
Thus the primary feedback matrix prK  which gives rise to the assignment of eigenvalues },....{ 1 p  to 

the system (20) becomes 

                                                          11
0

 TRSK prpr                                                               (36) 

 

5. Algorithm and numerical experiment 

In this section, we present an algorithm to obtain the solution of system (1) by the use of partial 
eigenvalue problem in section 3 based on assigning eigenvalue problem in section 4. Then by an example, 
we show the simplicity of our method.  

Object. Assign desired eigenvalues },...,{ 11
1


p  and },...,{ 1 q  to the systems (20) and (24) and  find 

the matrices prK  and deK  respectively such that the spectrum of closed-loop system (1) via derivative and 

propositional state feedback (5), i.e., )()( 1
prde BFABFE     in (7) be },....,,...,{ 11 npp    

Input. The matrices A , B  and E . 
Main steps: 

Step 1. Obtain prF  in system (8). 
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Step 1.1. Calculate the eigenvalues and the left eigenvector of A and then put associated columns },...,{ 1 p  

of left eigenvector A in 1Y  by (16) and (17). 

Step 1.2. Obtain the pair ),( 11 BY H  from (18) and (19). 

Step 1.3. Compute pr and prK  by similarity transformation similar to (27) until (36). 

Step 1.4. Compute prF  from (21) and the results of step 1.3. 

Step 2. Obtain deF  in system (10). 
Step 2.1. Calculate the matrices N and M from (9). 
Step 2.2. Repeat steps 1.1 until 1.3 and obtain deK  and deF  by (27) until (36) by using N,M, de ,and deK  

instead of A, B, pr , and prK . 

Step 2.3. Compute deF  from (25) and the results of step 2.2. 

Step 3. Input gained prF  and deF  in steps 1, 2 in (5) and obtain )(tu  of system (1). 

Step 4. Obtain )(tx  by putting )(tu , prF , and deF  are gained from steps 1, 2 and 3 in (7). 

Example 1. Consider the descriptor system (1) with following matrices which 109)( Erank . 
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Step 1: 
}20.81 3.4i, 35,6.383.11i,0,2. 4710.22i,-5. 613.06,-6.4{)(  A  

Therefore p = 5 and by considering 
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the matrix pr which assign zero eigenvalue to the system (20) is obtained as: 

 0017.057.017.057.019.5 iipr   

and by reassigning 5i,-10,-5}20,-10{  instead of }81.20,4.338.6,35.2,0{ i , the matrix feedback prK  is 

obtained as: 
 073.3403.4477.1903.4477.1902.42 iiK pr   

The state feedback matrix prF  for the system (8) is calculated by,  

H
prpr YKF 1  

 72.1342.1486.1144.3706.1616.213.156.1986.159.0   
Now we have: 

3.11i,-5}4710.22i,-5.465i,-10,-6.-1020,-13.06,{)(  prBFA  

Step 2: 













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




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


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
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









46.032.044.066.086.009.193.093.092.005.0

29.01.004.023.01.021.095.015.033.008.0

72.01.02.002.04.015.094.024.036.005.0

3.14.013.023.052.036.077.05.02.031.0

74.238.015.099.027.106.135.23.024.049.0

04.0057.079.059.01.076.052.037.015.0

13.121.006.008.023.025.043.024.084.007.0

15.148.059.029.027.0071.067.084.012.0

66.116.022.097.031.039.098.031.03.013.0

73.74.637.1016.245.3908.3275.4728.2023.1617.1
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





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
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


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0
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0

67.1

M  

},2.81 0.35i,0.540.35 , 8,-0.43,0 3.78i,-0.71.28,-1.09{)(  N  
Therefore q = 5 and by considering 
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
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
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000081.2

1

i
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


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




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
















01.0

02.0

02.0

02.0

06.0

)( 1 MY H  

the matrix de  which assign zero eigenvalue to the system (24) is obtained as: 
 068.201.361.1168.201.362.72 iide   

and by reassigning }09.012.0,16.0,2.0,25.0{ i  instead of }81.2,54.0,35.035.0,0{ i , the matrix 

feedback deK  is obtained as: 
 02.096.1265.136.4396.1265.176.97 iiKde   
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The state feedback matrix deF  for the system (10) is calculated by, 
H

dede YKF )( 1   

 1.2155.2248.754.1898.2325.4282.2957.2803.3094.2   
Now we have: 

))(())()(( 11   deprde MFNBFABFE  

}24.007.0,77.0,27.1,3.2,4,5,45,6{ ii   
Steps 3 and 4: 
Figures (1) and (2) show simulation result when 

 Tx 001.0001.0001.0001.0001.0001.0001.0001.0001.0001.00  . 

 

Fig. 1: State vector converge to zero in example 1 

 

Fig. 2: Input vector converge to zero in example 1 

6. Conclusion 
A method for finding the solution of descriptor continuous-time linear system in form of (1) has been 

considered. First by the use of the derivative and propositional state feedback (5) displayed system has been 
converted to two standard continuous-time linear systems (8) and (10) and it explains the advantages of this 
method, because working with the standard systems is much easier than the descriptor mode and also 
because of using the derivative and propositional state feedback we do not need the assumption of being full 
rank of open-loop matrix in standard systems. Second the PEVA method based on similarity transformation 
on standard systems has been used to obtain feedbacks   and   in systems (8) and (10) respectively. Third the 
state and input vectors in (1) has been obtained by (5) and (7) and illustrated by a numerical example and 
showed the input and state vectors converge to balance point (zero). 
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