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Abstract. In this paper, adaptive synchronization of fractional-order Lorenz systems with memristor is 

investigated. Based on the Lyapunov stability theories, several novel criteria are adopted to realize the 

synchronization of fractional-order Lorenz systems with memristor. Finally, some numerical examples are 

exploited to demonstrate the theoretical results. 
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1. Introduction  

In 1971, the existence of memristor, as the fourth fundamental circuit element included along with the 

resistor, capacitor and inductor, was theoretically postulated by Chua [1] and experimentally confirmed by 

the researchers of Hewlett-Packard (HP) who reported on the first memristor device in 2008 [2,3]. The main 

advantage of the memristor is that the value of resistance would depend on the polarity e and magnitude of 

the voltage, and also remember the current resistance when the voltage is turned off. On the other hand, 

fractional calculus, which mainly deals with derivatives and integrals of arbitrary order, was firstly 

introduced 300 years ago. However, it is only in recent decades that fractional calculus is applied to physics 

and engineering [4,5]. The major merit of fractional calculus, different from integer calculus, lies in the fact 

that it has memory and has proven to be a very suitable tool for describing memory and hereditary properties 

of various materials and processes, it has been widely used in many research fields such as fluid mechanics 

[6], physics [7] and control processing [8]. Meanwhile, the chaos synchronization is applied in many fields 

such as cryptography [9], electromagnetic field [10,11], secure communication [12] and bioengineering [13]. 

Therefore, many scholars investigated the chaos synchronization problems [14-23]. 

Based on the above analysis of motivation, this paper will study the adaptive synchronization strategy 

of fractional-order Lorenz systems with memristor, it has a great value in practical applications. Finally, 

some examples are exploited to demonstrate the theoretical results via numerical simulations.  

The rest of this paper is organized as follows. Section 2 describes the model formulation and some basic 

definitions. In Sect. 3, the adaptive synchronization of fractional-order Lorenz systems with memristor is 

realized. The numerical examples are provided to show the effectiveness of our theoretical results in Sect. 4. 

In Sect. 5, some conclusions are proposed. 

2. Preliminaries 

In this section, some basics of fractional calculus, definitions and lemmas assumptions are recalled. In 

addition, we introduce the mathematic model of fractional-order chaotic systems with memristor. For 

convience, ℝ𝑛will be the n-dimensional Euclidean space with norm ‖∙‖in the all following.  

2.1. Definitions and Lemmas 

Definition 2.1.1: [4]. Caputo’s fractional derivative of order q for a function  t :f   0, R   is defined 

by 
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where 0t  , n is a positive integer such that 1n q n   , and    is the gamma function, that is 
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For simplicity, we denote  qD f t  as the  0

c q

tD f t , and describe all of the following Caputo operators. 

Definition 2.1.2: [4]. Mittag-Leffler function is defined by 
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where 0q  and z C . 

Lemma 2.1.1: [24] For  0,1q , suppose   nx t R  is continuous function, the following inequality holds 
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2.2. Assumptions 

Assumption 2.2.1: It is assumed that there is positive constant   such that for any , nx y R ,  

     f y f x y x  
. 

Assumption 2.2.2: It is assumed that system (5) is a chaotic system with bounders, that is to say, there are 

positive constants 1M , 2M  such that 

1 1( )x t M ,           4 2( )x t M  

2.3. Model description 

In [25],   is flux, ( )W   is the memductance, the flux-controlled memristor is considered by 
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Similar to [25], a modified Lorenz system with a memristor can be described by 
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Refer to the above model, the new fractional-order Lorenz system with memristor according to (2) is 

described as 

1 1 2 4 1

2 1 2 1 3

3 1 2 3

4 1

( ) ,

,

,

.

q

q

q

q

D x x x W x x

D x x x x x

D x x x x

D x x

 





    


  


 
                                                     (2.3.3) 

Usually, in order to obtain the chaos generation, we set 0.97q  , 
30.1 10 ,a    30.1 10b   , 8,   

12,   30,   2  , than the simulation is done with the initial value (1, 2, -3, -5) to system (3), the 

simulation results are shown in Fig. 2.3.1. 



Fanqi Meng et al.: Adaptive synchronization of fractional-order Lorenz systems with memristor 

 

 

JIC email for contribution: editor@jic.org.uk 

250 

 

Fig-2.3.1: The chaotic attractor of the fractional-order Lorenz system with memristor   

Let  1 2 3 4, , ,
T

x x x x x , the system (5) can be described as 

   qD x Ax f x x   ,                                                           (2.3.4) 
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and , , , , ,a b      are positive constants. 

To investigate the synchronization of the fractional-order Lorenz systems with memristor, the drive 

system can be rewritten as 

        ( )qD x t Ax t f x t x t   .                                                 (2.3.5) 

Similarly, the response system can be described as 

           qD y t Ay t f y t y t u t                                          (2.3.6) 

where 
4y R  is the state vector of the system, the controller  u t  is defined as 

      ,u t k y t x t k R    . 

Let ( ) ( ) ( )e t y t x t  is the synchronization error between the states of system (5) and system (6), the 

error system between them can be obtained as 

              qD e t Ae t f y t f x t e t u t     ,                      (2.3.7) 

where 

     ( ) ( ) ( )e t y t x t     

4 1 4 1[ ( ( )) ( ) ( ( )) ( ),0,0,0]TW x t x t W y t y t  .                     (2.3.8) 

3. Main result 

In this section, the adaptive synchronization problem of fractional-order Lorenz systems with memristor 

is investigated. 

Theorem 3.1: Suppose Assumption 1 and Assumption 2holds. The systems (6) is synchronized with systems 

(5) and following conditions hold 

1 23 0A bM M k     ,                                                         (3.1) 

where A  is the largest eigenvalue of A . 

Proof.: Construct the following Lyapunov function  
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TV t e t e t .                                                         (3.2) 

Take the time derivative of  V t  along the solution  e t  of the system (10). via Lemma 1, and we have 
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Thus from the condition, we get the derivative of the Lyapunov function  V t  as   0qD V t  . 

Hence we may conclude  lim 0
t

e t


 , and the function adaptive synchronization between the master 

and response systems is achieved.This completes the proof. 

4. Numerical simulations 

In this section, we give some numerical simulations to illustrate the theoretical results obtained in the 

above subsection by MATLAB program. 

We set 0.97q   and choose the initial values of the drive and response systems are (1, 2, -3, -5) and   

(0, -10, 0, -10). It follows from Theorem 1 that the response system (6) is globally synchronized with the 

drive system (5) under the controller. Figure 2 shows the time evolution curves of the drive system (5) and 

the response system (6) without controller, from which it couled be seen that two systems have different state 

trajectories from each other over time. To obtain our main point, the error dynamics of systems (5) and (6) 

with controller are to be simulated in several conditions. Figure 3 gives the state trajectories of the drive 

system (5) and the response system (6) with controller. Figure 4 depicts the error dynamics of systems (5) 

and (6) with controller, which suggests that impulsive synchronization can be realized in finite time.  
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Fig-4.1: Dynamical behaviors of the drive system (5) and the response system (6) without controller, (a) 

1( )x t , 1( )y t ; (b) 2 ( )x t , 2 ( )y t ; (c) 3( )x t , 3 ( )y t ; (d) 4 ( )x t , 4 ( )y t  

 

Fig-4.2: Dynamical behaviors of the drive system (5) and the response system (6) with controller, (a) 1( )x t , 

1( )y t ; (b) 2 ( )x t , 2 ( )y t ; (c) 3( )x t , 3 ( )y t ; (d) 4 ( )x t , 4 ( )y t  
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Fig-4.2: Synchronization errors between systems (5) and (6) with  

Impulsive control matrix 

5. Conclusions and future works 

In this paper, based on Lyapunov stability theories and some novel criteria, the adaptive 

synchronization of fractional-order Lorenz systems with memristor have been achieved in finite time. The 

results are given not only by theoretical analysis, but also by numerical simulations. Because the discussed 

the Lorenz systems with memristor take into fractional-order, it is practical and attractive in understanding 

the Lorenz systems with memristor. It will have potential applications to image encryption, cryptography, 

and chaotic radar. Our future research is to investigate the adaptive synchronization of fractional-order 

memristive Lorenz systems with time delay. 

6. Acknowledgement 

This project is supported by the National Science Foundation of China (Grant Nos. 11472238 and 

51777180). 

7. References  

 Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971) 

 Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80-84 (2008) 

 Tour, J.M., He, T.: Electronics: the fourth element. Nature 453, 42-43 (2008) 

 Podlubny, I.: Fractional Differential Equations, Academic Press, New York, (1999). 

 Butzer, P.L., Westphal, U.: An Introduction to Fractional Calculus,World Scientific, Singapore, (2000).  

  Tripathil, D., Pandey, S., Das, S.: Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a 

channel. Appl. Math. Comput. 215(10), 3645-3654 (2010). 

 Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey, (2001).      

 Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D.Y., Feliu-Batlle, V.: Fractional-order Systems and Controls. 

Fundamentals and Applications (London: Springer) (2010).    

 Ojalvo, J., Roy, R.: Sptiotemporal communication with synchronization optical chaos. Phys. Rev. Lett. 86 (22), 

5204-5207 (2001). 

  Ma, J., Wu, F.Q., Wang, C.N., Wang, C.N.: Synchronization behaviors of coupled neurons under electromagnetic 

radiation. Int. J. Mod Phys B. 2, 1650251(2017). 

 Ma, J., Mi, L., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of 

electromagnetic field. Applied Mathematics And Computation. 307, 321-328(2017). 

  Yang, T., Chua, L.: Impulsive stabilization of control and synchronization of chaotic systems: theory and 

application to secret communication. Circuits Syst. I: Fundam. Theory Appl. 44 (10) 976-988. (1997). 



Fanqi Meng et al.: Adaptive synchronization of fractional-order Lorenz systems with memristor 

 

 

JIC email for contribution: editor@jic.org.uk 

254 

 Magin, R.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng, 32(3-4) 195-377 (2004). 

 Wu, H.Q., Wang, L.F., Niu, P.F.: Global projective synchronization in finite time of nonidentical fractional- order 

neural networks based on sliding mode control strategy. Neurocomputing 234, 264-273 (2017) 

 Cao, J.X., Chen,H.B.: Impulsive fractional differential equations with nonlinear boundary conditions. Math. 

Comput. Model. 55, 303-311(2012) 

 Stamova, I., Stamov, G.: Stability analysis of impulsive functional system of fractional order. Commun. Nonlinear 

Sci 19,  702-709 (2014) 

 Lu, J.Q., Wang, Z.D., Cao, J.D., Ho, D.W.C., Kurths, J.: Pinning impulsive stabilization of nonlinear dynamical 

networks with time-varying delay. Int. J. Bifurc. Chaos 22(7), 137-139 (2012) 

 Chen, W., Jiang, Z., Zhong, J., Lu, X.: On designing decentralized impulsive con- trollers for synchronization of 

complex dynamical networks with nonidentical nodes and coupling delays. J. Frankl. Inst 351, 4084-4110 (2014). 

 Wu, H.G., Chen, S.Y., Bao, B.C.: Impulsive synchronization and initial value effect for a memristor-based chaotic 

system, Acta Phys. Sin 64, 030501 (2015). 

 Chandrasekar, A., Rakkiyappan, R.: Impulsive controller design for exponential synchronization of delayed 

stochastic memristor-based recurrent neural networks. Neurocomputing 173, 1348-1355 (2016). 

 Li, D., Zhang, X.P.: Impulsive synchronization of fractional order chaotic system with time-delay, 

Neurocomputing. 216, 39-44. (2016). 

 Wang, F., Yang, Y.Q., Hu, A.H., Xu, X.Y.: Exponential synchronization of fractional-order complex networks via 

pinning impulsive control, Nonlinear Dyn. 82, 1979-1987. (2015) 

 Xi, H.L., Yu, S.M., Zhang, R.X., Xu, L.: Adaptive impulsive synchronization for a class of fractional-order 

chaotic and hyperchaotic systems. Optik 125, 2036-2040 (2014) 

 Norelys, A.C., Manuel A, D.M., Javier A, C.: Lyapunov functions for fractional order systems, Com Nonlinear Sci 

Num Simul. 19. 2951-2957.(2014) 

 Wang, S.B., Wang, X.Y., Zhou, Y.F.: A Memristor-Based Complex Lorenz System and Its Modified Projective 

Synchronization, Entropy. 17. 7628-7644.(2015) 


