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Abstract. In this research work, we propose an intelligent search technique called genetic simulated 

annealing algorithm (GASA) to obtain an approximate solution to the single machine total weighted tardiness 

job scheduling problem, which is a strong NP-hard. The developed approach is based on two metaheuristics: 

genetic algorithm (GA) and simulated annealing (SA) algorithm. In this context, when GA is exploited as a 

global search strategy to discover solution space, SA algorithm is used as a local search technique to enhance 

more efficiently the visited attractive regions to improve solution quality. Numerical results using a set of 

benchmarks have shown the capability of the proposed method to produce better solutions compared to 

results given by some other recently literature works. 
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1. Introduction  

The single machine total weighted tardiness (SMTWT) problem is an important special case of 

scheduling problem that is referred to be a strongly NP-hard problem [1][2]. It has been discussed for many 

years, and several effective algorithms have been presented in the literature. This problem is stated as 

following : There are a set of n jobs to be processed on exact one machine. The machine processes only one 

job at a time and without interruption. Each job i has an integer processing time pi, a positive weight wi and a 

distinct due date di. For a given processing order of the jobs, the earliest completion time Ci and tardiness Ti 

= max(0,Ci - di) can be computed for each job. The objective is to find the sequence of n jobs that  minimizes 

the total weighted tardiness (TWT) which is done as following : 

                                                          (1) 

Actually, the SMTWT problem becomes an important combinatorial optimization problem that has 

various real life applications such as sequencing in production process, assigning the sequence of stages in a 

construction project, delivering the goods with the customer’s priority in supply chain and so on [3]. 

A various number of exact methods have been developed in literature in order to resolve the SMTWT 

problem for a moderate number of jobs. The well-known of them is dynamic programming paradigm and 

Branch-and-Bound method, optimality of the solution obtained by these approaches is guaranteed, but they 

are mostly constrained by available memory and required computation time, especially when the number of 

jobs is more than 50 [4]. To overcome these limits, metaheuristic algorithms  were shown to be promising. 

The basic idea of this methods class, is to start by an initial solution and iteratively improve it through a 

series of iterations until the solution doesn’t become better any longer. They include polynomial-time 

approximation algorithm [5], tabu search [6], [7], simulated annealing [8], ant colony optimization [9], 

iterated dynasearch [10], genetic algorithm [11], variable neighborhood search [12] and so on. 

In this research paper, we aim to present a hybrid model based on metaheuristics to solve the SMTWT 

problem. The proposed approach combines the strong global search ability of genetic algorithm to discover 

the search space using a part of the initial population with the excellent local improvement which is given by 

simulated annealing using the rest of the population. The reminder of this paper is organized as follows : In 

section 2, some previous related works are briefly cited. Section 3 summarizes principals concepts of both 
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GA and SA algorithms. Section 4 outlines the proposed GASA algorithm and its components for the 

SMTWT problem. In section 5, we present the obtained simulation results. Finally, conclusion and 

perspectives of our work are given in section 6. 

2. Related Works 

A brief review of some related works which are used to solve SMTWTP is presented in this section. In 

Ref. [4], the authors demonstrated that exact methods such as Dynamic Programming and Branch-and-

Bound are inconsistently solve problems with more than 50 jobs. Potts and van Wassenhove [13] compared 

four dispatching rules: weighted shortest processing time (WSPT), earliest due date (EDD), modified cost 

over time (MCOVERT) and apparent urgency (AU). They found that AU performs best and WSPT is greatly 

inferior. Alidaee and Ramakrishnan [14] tested the COVERT-AU class of dispatching rules for problems of 

up to 200 jobs. As a result of their study, dispatch rules give a quick sequencing method, but have poor 

solution quality. 

Crauwels et al. [15] proposed a single and multi-start versions of simulated annealing, tabu search (TS) 

and genetic algorithm implementations for the SMTWTP problem. The authors showed that an acceptable 

results are produced by simulated annealing and tabu search dominates the other methods. An iterated 

dynasearch algorithm, which is a local search technique that uses dynamic programming to generate the best 

moves, is introduced in [10]. An excellent solutions are also obtained in a short time by a natural permutation 

encoded GA and its multistart version using problems with 40 and 50 jobs [16].  

A particle swarm optimization (PSO) algorithm to solve the single machine total weighted tardiness 

problem is proposed in [17]. Experimental results show that the PSO algorithm is able to find the optimal 

and best-known solutions on all instances of widely used benchmarks from the OR libary. An heuristic 

search applied to the SMTWTP is discussed in [18]. In Ref. [19], the authors developed a variable structure 

learning automata to solve SMTWT problem. Recently, the authors in [20] proposed a new genetic algorithm 

to produce a best approximate solutions for SMTWT problem. The developed procedure provided a good 

results compared to some existing dispatching rules.   

3. Preliminaries 

3.1. Genetic Algorithm Overview  
The basic principles of GAs were introduced by Holland in 1975 [21]. GA is an intelligent random 

search  technique which have been successfully applied to find optimal solutions of many complex problems 

[22]. A genetic algorithm starts with a population of potential solutions and iteratively replaces the current 

population by a new population. It is based on a suitable encoding for the problem and a fitness function that 

is used to measure each solution quality. At each generation, a selection operator is applied to choose  the 

parents and recombines them using a crossover operator to produce offsprings that are submitted to a 

mutation operator in order to perturb them locally. This will continue for many generations until the 

termination condition is met. 

3.2 Simulated Annealing Overview  
Simulated annealing was first introduced by Kirkpatrick et al. [23]. It is a stochastic method that is used 

to find approximate solutions to very large combinatorial problems. The annealing algorithm begins with an 

initial feasible configuration and proceeds to generate a neighboring solution by perturbing the current 

solution. If the cost of the new solution is less than that of the current solution, the new solution is accepted; 

otherwise, it is accepted or rejected with probability  p = e-C/T. The probability of accepting solutions 

depending of the temperature (T), and the difference in cost between the new solution and the current 

solution (-C). Typically, SA starts with a large value of T, which means that an inferior solution has a high 

probability of  being accepted and the algorithm works as a random search to find a promising region in the 

solution space. As the optimization process progresses, the temperature decreases and there is a lower 

probability of accepting an inferior solution. The process is repeated until the stopping criterion is reached.   

4. Materials and Methods  

The mean advantage of GA is its capability to discover solution space globally according to the 

crossover and mutation operators, but it suffers from premature convergence and it can not escape from local 
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optimum. In other hand, SA algorithm accepts a worse solution and it has the ability of escaping from local 

optimal solution which allows to visit another promising regions until solving overall optimal solution. The 

new developed hybrid model called GASA consists in a strong cooperation of GA and SA, it takes 

advantages of the diversification strategy assured by GA and the local improvement allowed by SA 

technique.  

In our SMTWT problem, the main idea of this cooperation consists of creating randomly two equitably 

size populations from the whole basic initial population, these ones called respectively: GA-population and 

SA-population. When the first half is treated by GA algorithm to guide global search, the second part is 

exploited using SA algorithm to obtain local best solution for each chromosome.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Folowchart of  the proposed algorithm. 

The temperature T is updated after the combined population is constructed. The general flowchart of the 

proposed approach is presented in Fig. 1. 

4.1 GA components for SMTWT problem 

4.1.1 Chromosome representation 

For the single machine total weighted tardiness problem, each chromosome has n genes and each gene 

of the chromosome has an allele value chosen randomly from the set {1, 2, . . . , n}, where n is the number of 

the jobs to be scheduled. Hence a chromosome is represented as a vector of feasible processing order of n 

jobs which represent a scheduling solution.  

4.1.2 Fitness function  

The fitness computation process consists of two phases. In the first phase, the total weighted tardiness is 

calculated for each chromosome in the population. After that,  all chromosomes are ordered according to the 

decreasing values of 1/wiTi and individuals whose are high values of 1/wiTi are retained in the next 

generation.  

4.1.3 Population initialization  

Initial population is an important element for all evolutionary algorithms such as GAs. Therefore, using 

a better technique to create the initial population would not only improve the average performance of genetic 
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algorithm, but also to reduce computation time dramatically. In this study, the initial population is composed 

of a certain number denoted as P of chromosomes which are generated randomly and corresponds of feasible 

solutions, after that, the mixed dispatch rule MDR [24] is applied to each chromosome in order to improve 

its quality. 

4.1.4 Selection scheme  
Selection scheme plays an essential role in improving the average quality of the population by passing  

better chromosomes to the genetic operators in order to construct the next generation. Here, the scheme of  

roulette wheel is chosen according to its simplicity and its effectiveness. In this way, the values given a 

better fit have higher probability to produce a child chromosomes.  

4.1.5 Crossover operator 

Crossover is the first basic genetic operator for GAs. This operator processes the current solutions in 

order to find better ones by the selection of genes from parent chromosomes and the creation of a new 

offspring. In this work, we retain the one cut-point crossover strategy. The proposed one-point-cut method to 

generate the offspring is described as follows :  

Choose randomly two parents and one position to cut parents, the first child is generated using the 

inferior part of parent1 and it is completed by the other genes of parent2 in which the order of added genes is 

respected. The same way is used to generate child2 and the proposed scheme is illustrated in Fig. 2 bellow : 
 

1 2 3 4 5 6 7 8  6 3 7 8 1 4 5 2 

Parent1 

 

 Parent2 

 

1 2 3 6 7 8 4 5  6 3 7 1 2 4 5 8 

Child1  Child2 

 
Fig. 2: Scheme of crossover operator. 

We can indicate here, that this scheme is simple and generate feasible solutions for our SMTWT problem. 

4.1.6 Mutation  operator 

The principal role of the mutation operator is to provide a diversity in a population and helps GA to 

keep away from local optima. For that, it alters one or more genes with a probability equal to the mutation 

rate. The mutation procedure used in this work can be summarized as follows :  

Choose randomly one gene and one position in the chromosome to mute. After that, insert this gene in the 

selected position. This technique is showed in Fig. 3 bellow:   
 

 

 

1 2 3 4 5 6 7 8 

Parent1 

 

1 2 3 7 4 5 6 8 

Child1 

 
Fig. 3: Scheme of mutation operator. 

4.1.7 Replacement  

This step is very important to construct the next generation for the genetic algorithm. The replacement 

strategy used here consists of the selection of the best chromosomes of the current population and their 

offspring. They will form a new population to survive into the next generation. 

4.1.8 Termination Criteria 

The last element necessary for genetic algorithm is termination criteria. In our study, the search process 

can be stopped when certain number of iterations Itmax is completed. 

The pseudo-code of our genetic algorithm can be summarized as follows : 
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Pseudo-code of  GA Algorithm 

      Initialize  Psize, Pcross , Pmut, Itmax 

      Set  = 0 

      Generate Psize sequences randomly 

      Apply MDR rule for each chromosome 

      Repeat 
      I=0 

     = 0 

     While )
2

( sizeP
  do  

         Select two parents sing selection scheme, 

        Apply crossover operator  to generate two childs using    

        Pcross probability value 

        Muted the obtained Childs according to the Pmut  probability 

       = + 1 

   End While 

        Evaluate all chromosomes (2Psize, parents and childs) using the fitness function 

        Arranged parents and childs in decreasing order using their fitness function 

        Save the best Psize chromosomes in Bestpop and remove the rest set of chromosomes 

        Replace Psize with Bestpop 

        i=i+1 

 Until i=Itmax 

 

4.2 SA components for SMTWT problem 

4.2.1 Cost Function 

Each scheduling problem has its own cost function to evaluate input sequence. A cost function should 

be explicitly defined as a measure the quality of each sequence of jobs. In our study, a cost function used is 

the total weighted tardiness (TWT) of the n jobs in the considered sequence. 

4.2.2 Initial Solution  

The generation of an initial solution is an important step towards getting a final improved solution. In 

our developed method, the initial solution is constructed using the same strategy which is described in 

section 4.1.3 cited above. 

4.2.3 Neighborhood Generation Strategy 
Basically, all the move sets are related to change the jobs position in the sequences to generate a new 

solution. In this study, we choose to apply the interchange neighborhood strategy. This mechanism consists 

of all permutations that can be obtained by swapping two elements at the ith and jth position (ij) regardless 

of their adjacency. The size of this neighborhood is n.(n−1)/2. 

4.2.4 Cooling Schedule 

The cooling schedule of the simulated annealing algorithm consists of three essential components: 

initial temperature, final temperature and the temperature decrement scheme. The initial temperature must be 

hot enough to allow a move to almost any neighbourhood state. For the final temperature, it is usual to let the 

temperature decrease until it reaches zero. However, this can make the algorithm run for a lot longer. One 

way to decrement the temperature is the simplest geometric decrement rule which is defined by     Tk+1 = 

α.Tk . This scheme decreases the temperature value by an α factor, which does a range of 0.70 ≤ α < 1.0. In 

our study, both constant α, initial temperature Tinitial and final temperature Tfinal values are fixed 

experimentally. 

The pseudo–code of our SA is given below : 



Journal1 Information and Computing Science, Vol. 12(2017) No. 3, pp 270-279 

 

 

JIC email for subscription: publishing@WAU.org.uk 

275 

Pseudo-code of SA algorithm  

     Initialize Tinitial, Tfinal and  
     Generate an initial solution Sinitial      

     Create Scurrent from initial solution Sinitial 

     Calculate TWT of Scurrent 

     Sbetter Scurrent  

     TWTbetter TWT(Scurrent)  

     T = Tinitial 

     Setting Lcm 

     While (T > Tfinal) do 

     n = 1 

    

    While (Lcm > n) do 

        Create Snew using interchange neighborhood strategy  

        Calculate TWT of Snew 

        difference (TWT(Snew) - TWT(Scurrent)) 

        If (difference ⇐ 0) then 

            Scurrent = Snew 

            If  TWT(Snew) < TWT(Sbetter) then 

               Sbetter = Snew 

               TWTbetter TWT(Snew) 

           end if 

       else 

        Boltzmann probability = exp(−difference/T) 

        If (Boltzmann probability) > random(0,1) then 

            Scurrent = Snew 

        end if 

      end if 

     n = n + 1 

     End while 

     T = α.T 

     Increase Lcm 

   End while 

Return the optimal sequence Sbetter and its cost TWTbetter 

After the description of the different components of the proposed model, the pseudo-code of GASA 

procedure is summarized as follows : 

Pseudo-code of  GASA algorithm   

1. Fix the number of generations GMAX 

2. Fix the population size Psize 

3. Initialize the initial population randomly; 

4. g 1 

5. While (g  GMAX ) do  

     5.1. Create GA-population and SA-population randomly  

           // Update chromosomes character using genetic operators. 

     5.2.  Apply GA (GA-population) 

           // Improve locally each chromosome  

     5.3. Apply SA (SA-population)     

         // Reconstruct the whole population 

     5.4. Combine GA-population and SA-Population 

     5.5.  g  g + 1 
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6. End while 

// Optimal sequence and the best cost. 

7. Return the chromosome corresponding to the best cost value. 

5. Experimental Results   

The developed hybrid approach GASA presented to solve the SMTWT problem is coded in JAVA 

language and run on an Intel Pentium IV 2.6GHz PC with 1GB memory. We tested the performance of our 

proposed algorithm using the benchmark set of randomly generated instances as follows :  

1. Each job j has an integer processing time pj in the uniform distribution (1,100), an integer weight wj in 

the uniform distribution (1,10).  

2. The range of due dates (RDD) and the tightness factor of due dates (TF) values are selected from the 

set {0.2, 0.4, 0.6, 0.8, 1.0} respectively.  

3. The due date dj of each job i is selected in the uniform distribution (P*(1-TF-RDD/2), P*(1-

TF+RDD/2)), where: 

4. The size of the considered problems is n=25, 50 and 100 jobs, five instances have been generated  

 

for each of the 25 combinations of values of RDD and TF. Thus, our used dataset is composed of 375 

problems. In addition, all key parameter values of our developed GASA algorithm are reported in table 1.  

TABLE 1. PARAMETER SETTINGS FOR EXPERIMENTS. 

Parameter Value 

Population size (Psize) 100 

Number of iteration (Itermax) 1000 

Crossover rate (Pcross) 0.70 

Mutation rate (Pmut) 0.01 

Initial temperature (Tinitial) 100 

Final  temperature (Tfinal) 0.0001 

To validate the performance of the proposed method GASA, a set of comparison results with the genetic 

algorithm presented in [20] are summarized in table 2, 3 and 4. In this tables, columns 1 and 2 present the 

RDD and TF values. Columns 3 and 4 provide the average values of the total weighted tardiness for the 

genetic algorithm (GA) and our proposed approach GASA respectively. The last column, records the 

percentage relative improvement (PRI ) values. PRI is calculated by the following equation [25]: 

                                                                                                                     

 (2) 

                                                                                                                                                          

where TWTGA is the total weighted tardiness obtained by GA algorithm, TWTGASA is the total weighted 

tardiness obtained by our developed GASA algorithm. 

TABLE 2. COMPARATIVE RESULTS OF 25 JOBS. 

RDD TF GA[20] 
Our 

GASA 
PRI (%) 

 0.2 0.2 

0.4 

0.6 

0.8 

1.0 

485 

3292 

13454 

26167 

37451 

210 

2206 

11502 

21945 

33204 

56.70 

32.99 

14.51 

16.13 

11.34 
0.4 0.2 

0.4 

0.6 

0.8 

1.0 

213 

2339 

12312 

23579 

29654 

157 

2013 

10536 

21618 

24806 

26.29 

13.94 

14.42 

8.32 

16.35 
0.6 0.2 

0.4 

0 

909 
0 

714 

- 

21.45 

 


n

i iPP
1

100*
)(

(%)
GA

GASAGA

TWT

TWTTWT
PRI
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0.6 

0.8 

1.0 

9801 

15871 

28687 

6312 

11468 

25307 

35.60 

27.74 

11.78 
0.8 0.2 

0.4 

0.6 

0.8 

1.0 

0 

658 

8251 

13458 

21790 

0 

533 

7159 

11201 

17805 

- 

19.00 

13.23 

16.77 

18.29 

1.0 0.2 

0.4 

0.6 

0.8 

1.0 

0 

0 

3283 

13017 

18423 

0 

0 

2604 

12116 

12508 

- 

- 

20.68 

6.92 

32.11 

  Average 20.69 

TABLE 3. COMPARATIVE RESULTS OF 50 JOBS. 

RDD TF GA[20] 
Our 

GASA 
PRI (%) 

 0.2 0.2 

0.4 

0.6 

0.8 

1.0 

1570 

15018 

35878 

58769 

172663 

834 

10903 

30216 

47915 

165457 

46.88 

27.40 

15.78 

18.47 

4.17 

0.4 0.2 

0.4 

0.6 

0.8 

1.0 

106 

7620 

29149 

86420 

130146 

82 

3608 

21347 

72146 

97547 

22.64 

52.65 

26.77 

16.52 

25.05 

0.6 0.2 

0.4 

0.6 

0.8 

1.0 

0 

3467 

19137 

54251 

121932 

0 

1648 

13345 

48201 

112809 

- 

52.47 

30.27 

11.15 

7.48 

0.8 0.2 

0.4 

0.6 

0.8 

1.0 

0 

2426 

23354 

454230 

89779 

0 

1023 

19645 

316407 

72015 

- 

57.83 

15.88 

30.34 

19.79 

1.0 0.2 

0.4 

0.6 

0.8 

1.0 

0 

0 

15272 

34195 

66424 

0 

0 

10314 

26309 

54618 

- 

- 

32.46 

23.06 

17.77 

  Average 26.42 

TABLE 4. COMPARATIVE RESULTS OF 100 JOBS. 

RDD TF GA[20] 
Our 

GASA 
PRI (%) 

 0.2 0.2 

0.4 

0.6 

0.8 

1.0 

4881 

54041 

141276 

374016 

690059 

1208 

33142 

118006 

201412 

332045 

75.25 

38.67 

16.47 

46.15 

51.88 

0.4 0.2 

0.4 

0.6 

0.8 

1.0 

89 

25125 

130173 

315322 

525424 

52 

16003 

11754 

201623 

301711 

41.57 

36.31 

90.97 

36.06 

42.58 

0.6 0.2 

0.4 

0.6 

0.8 

1.0 

0 

11343 

113384 

270245 

407011 

0 

7501 

100245 

168204 

203425 

- 

33.87 

11.59 

37.76 

50.02 

0.8 0.2 

0.4 

0 

4339 
0 

1416 

- 

67.37 
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0.6 

0.8 

1.0 

78918 

228601 

347094 

62375 

119205 

101248 

20.96 

47.85 

70.83 

1.0 0.2 

0.4 

0.6 

0.8 

1.0 

0 

0 

25381 

100770 

266852 

0 

0 

13546 

85326 

124709 

- 

- 

46.63 

15.33 

53.27 

  Average 44.35 

According to the results figured in table 2, 3 and 4 above, it is evident that our GASA approach 

consistently outperforms the results obtained by the genetic algorithm presented in Ref. [20]. In addition, We 

can show clearly that the average of the percentage relative improvement increase when the problem size 

increase. This remark is due to the excellent way to discover locally and globally of the space search by our 

hybrid approach. The PRI values is very significant when the number of jobs attain 100 which demonstrate 

the superior capabilities of our approach to solve a large size problems. 

6. Conclusion 

In this research work, a hybrid approach based on metaheuristics is proposed to tackle the single 

machine total weighted tardiness problem. The developed method combines the advantages of GA algorithm ; 

particularly its potent to diversify the search over the solution space and those of simulated annealing ; as a 

local improvement approach to intensify the search process in local regions and to allow the hybrid 

algorithm to escape from local optima. Obtained results using different size problems show the superior 

capability of our hybrid model compared to others state of the art works. 

As a perspective of this work, the improvement of the initial population by another better heuristics is 

desired. In addition, we can integrate other mechanisms to neighborhood generation step or to use another 

genetic operators in GA core to improve the quality of the solution. A comparison of the proposed method 

with some other state-of-the-art techniques such as PSO, SA, tabu search and ant colony is possible to verify 

its effectiveness. 

7. Acknowledgements  

The authors like to express their sincere appreciation to the reviewers for their careful and thorough 

critical appraisement of an earlier draft of the paper. 

8. References  

 E.L. Lawler, A Pseudopolynomial Algorithm for Sequencing Jobs to Minimize Total Tardiness, Annals of Discrete 

Mathematics 1(1977), 331-342.  

 J.K. Lenstra, K. Rinnooy, P. Brucker, Complexity of Machine Scheduling Problems, Annals of Discrete 

Mathematics 1(1977), 343-362.  

 K. Wanatchapong, Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process 

Regression, Int. Journal of Mathematical, Computational, Physical and Quantum Engineering 8 (2014), pp. 938-

944. 

 T.S. Abdul-Razaq, C.N. Potts, L.N. Van Wassenhove, A Survey of Algorithms for the Single Machine Total 

Weighted Tardiness Scheduling Problem, Discrete Applied Mathematics 26 (1990), pp. 235-253.  

 T. C. E. Cheng, C. T. Ng, J. J. Yuan, and Z. H. Liu, Single machine scheduling to minimize total weighted 

tardiness, Eur. J. Oper. Research 165 (2005), pp. 423-443. 

 W. Boejko, J. Grabowski, and M. Wodecki, Block approach—tabu search algorithm for single machine total 

weighted tardiness problem, Comput. Ind. Eng. 50 (2006), pp. 1-14. 

 U. Bilge, M. Kurtulan, and F. Kýraç, A tabu search algorithm for the single machine total weighted tardiness 

problem, Eur. J. Oper. Research 176 (2007), pp. 1423-1435. 

 A. C. Nearchou, Solving the single machine total weighted tardiness scheduling problem using a hybrid simulated 

annealing algorithm, Proc. of the 2nd IEEE Int. Conf. Industrial Informatics, pp. 513-516, 2004. 



Journal1 Information and Computing Science, Vol. 12(2017) No. 3, pp 270-279 

 

 

JIC email for subscription: publishing@WAU.org.uk 

279 

 O. Holthaus and C. Rajendran, A fast ant-colony algorithm for single machine scheduling to minimize the sum of 

weighted tardiness of jobs, J. Oper. Res. Soc. 56 (2005), pp. 947-953. 

 R. K. Congram, C. N. Potts, and S. L. Van de Velde, An iterated dynasearch algorithm for the single-machine total 

weighted tardiness scheduling problem, Informs J. Comput. 14 (2002), pp. 52-67. 

  N. Liu, M. Abdelrahman, and S. Ramaswamy, A genetic algorithm for single machine total weighted tardiness 

scheduling problem, Int. J. Intelligent Control and Systems 10 (2005), pp. 218-225. 

  J. Wang and L. Tang, A population-based variable neighborhood search for the single machine total weighted 

tardiness problem, Comput. Oper. Research 36 (2009), pp. 2105-2110. 

  C. N. Potts and L. N. Van Wassenhove, Single machine tardiness sequencing heuristics, IIE Transactions 23 

(1991), pp. 346-354. 

  B. Alidaee and K. R. Ramakrishnan, A computational experiment of COVERT-AU class of rules for single 

machine tardiness scheduling problem, Computers and Industrial Engineering 30 (1996), pp. 201-209. 

  H.A.J. Crauwels, C.N. Potts, L.N. Van Wassenhove, Local Search Heuristics for Single Machine Total Weighted 

Tardiness Scheduling Problem, Informs Journal on Computing 10 (1998), pp. 341-350. 

  M. Ana, R. Carlos, D.C.S. Silvio, A GA Based Scheduling System for Dynamic Single Machine Problem, Proc. of 

the 4th IEEE International Symposium on Assembly and Task Planning, Soft Research Park, Fukuoka, Japan, pp. 

262-267, 2001. 

  M.F. Tasgetiren, S. Mehmet and Y.L.G. Gencyilmaz, Particle Swarm Optimization Algorithm for Single Machine 

Total Weighted Tardiness Problem, Proc. of the 2004 Congress on Evolutionary Computation, pp. 1412-1419, 

2004. 

  M.j. Geiger, On heuristic search for the single machine total weighted tardiness problem – some theoretical 

insights and their empirical verification, European Journal of Operation Research 207 (2010), pp. 1235-1243. 

  S. Sabamoniri, K. Asghari, M.J. Hosseini, Solving Single Machine Total Weighted Tardiness Problem Using 

Variable Structure Learning Automata, Int. J. Comput. Appl. 56 (2012),  pp. 37-42. 

  Y. Suppiah, KP. Shen, Minimizing total weighted tardiness on single machine, international Journal of Research in 

Science Engineering and technology 2 (2015), pp. 12-18. 

 J. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, 

Control and Artificial Intelligence, The University of Michigan Press, 1975.  

  C.-J. Hsu, Y.-J. Yang, and D.-L. Yang,, Due-date assignment and optimal maintenance activity scheduling 

problem with linear deteriorating jobs, Journal of Marine Science and Technology 19 (2011), pp. 97-100. 

  S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing, Science 220 (1983) , pp. 

671-680. 

 A. Ying and J. Wang, Mixed Dispath rule for single machine total weighted tardiness problem, Journal of Applied 

sciences 13(2013), pp. 4616-4619. 

 F. Jin, S. song and C. Wu, A simulated Annealing algorithm for single machine scheduling problems with family 

setups, Computers and Operations Research 36 (2009), pp. 2133-2138. 

 

  

 


