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Abstract. In order to deal with uncertain information of real-world, in 2011 Zadeh suggested the concept 

of a Z-number, as an ordered pair of fuzzy numbers (A ̃,B )̃ that describes the restriction and the reliability of 

the evaluation. Due to the limitation of its basic properties, converting Z-number to classical fuzzy number is 

rather significant for application. In this paper, we will calculate fuzzy expected value of a Z-number with 

assuming uniform distribution and linear membership functions. This fuzzy expected value can be used 

instead of Z-number in applications. An Example is used to illustrate the procedure of the proposed approach. 
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1. Introduction 

In the real world, decisions are based on information usually uncertain, imprecise and/or incomplete, 

such information is often characterized by fuzziness, but it is not sufficient and the other important property 

of information is that information must be reliable. Thus, fuzziness from the one side and reliability form the 

other side are strongly associated to each other. In order to take into account this fact, in 2011 Zadeh 

proposed a concept, namely Z-number, which is an order pair of fuzzy numbers (A ̃, B ̃). The first component, 

A ,̃ is a fuzzy restriction and the second component B ̃ is a reliability of the first component. Typically, A  ̃

and B ̃ are described in a natural language for example (about 25 minutes, very sure) [1, 2, 3]. 

In 2012, Yager used Z-number to provide a simple illustration of a Z-valuation (X, A ,̃ B ̃). He showed 

that these Z-valuations essentially induce a possibility distribution G(p) over probability distributions 

associated with an uncertain variable X and used this representation to make decisions and answer questions. 

He suggested manipulation and combination of multiple Z-valuations. He showed the relationship between 

Z-numbers and linguistic summaries and provided for a representation of Z-valuations in terms of Dempster–

Shafer belief structures, which made use of type-2 fuzzy sets [4,5].Yager found a fuzzy expected value of a 

Z-number whose probability density function is expressible in terms of an exponential distribution.  

Kang et al. [6] proposed a simple method for converting Z-numbers with range [0, 1] to the classical 

fuzzy numbers in 3 step: first convert the second part (reliability) into a crisp number and then calculate the 

weighted Z-number by adding the weight of the second part (reliability) to the first part (restriction) and 

finally converting the weighted fuzzy number to normal fuzzy number. The benefit of the proposed method 

is represented by its low analytical and computational complexity, hence their theorem for converting Z-

number to classical fuzzy number was used in some papers [7,8,9,10]. 

Gardashova [11] suggested an algorithm of decision making method using Z-numbers, in 5 steps: 

Construction of the fuzzy decision making matrix, transforming the linguistic value to numerical value, 

normalizing the fuzzy decision making matrix, Converting the Z-numbers to crisp number and Determining 

the priority weight of each alternative. He used a simple way of the canonical representation of 

multiplication operation on triangular fuzzy numbers [12] for the converting the Z-numbers to crisp number.  

In this study we find a fuzzy expected value of a Z-number whose probability density function is 

expressible in terms of a uniform distribution. The result can be used in many applications to converting Z-

number to fuzzy number. 

The remainder of the paper is organized as follows: In Section 2 we discuss the concept of Z-number, 

Z-number with the probability based on uniform distribution and the probability of a restriction (Ã) on the 

values of uncertain variable (X) based on the parameters of uniform distribution. Section 3 explains the 

method of calculating the maximum probability of Ã. Later in section 4, the membership function of the 
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possibility of the expected value of Z-number (µ) is proposed. Finally, the whole presented material is 

summed up in section 5. 

2. The concept of Z-numbers  

Any Z-number is an ordered pair of fuzzy numbers (𝐴̃, 𝐵̃) where Ã is a restriction on the values of uncer

tain variable, X, and 𝐵̃ is the level of confidence in Ã. Both Ã and 𝐵̃ are fuzzy sets. Zadeh[1] defines Z-valuat

ion as an ordered triple, (X,𝐴̃,𝐵̃), which is equivalent to “ X is (𝐴̃, 𝐵̃)”. Moreover, Z-valuation can be defined

 as ̃𝑃𝑟𝑜𝑏(𝑋  𝑖𝑠 𝐴 ̃) 𝑖𝑠 𝐵  ̃                                                               (1) 

According to the Zadeh’s equation, we express the probability that X is Ã as: 

𝑃𝑟𝑜𝑏𝑝(𝑋 𝑖𝑠 𝐴̃) = ∫ 𝐴(𝑥)𝑓(𝑥)𝑑𝑥
𝑅

                                                (2) 

where A(x) is the membership function of Ã and f(x) is the probability density function of X on R. Now, we 

can get G(p), the degree to which p satisfies our Z-valuation, 〖Prob〗_p (X is A ̃ ) is B, as: 

𝐺(𝑝) = 𝐵 (𝑃𝑟𝑜𝑏𝑝(𝑋 𝑖𝑠 𝐴)) = 𝐵(∫ 𝐴(𝑥)𝑓(𝑥)𝑑𝑥)
𝑅

                                (3) 

Since the probability density function of X is unknown, according to Zadeh’s simplifying assumption, a 

particular set of parametric distributions (e.g. normal, exponential and uniform distributions) can be applied 

based on available knowledge about the variable [1]. But when the knowledge available is not sufficient, the 

uniform distribution is proposed for a poorly known variable [13]. This distribution is sometimes referred to 

as the “no knowledge” distribution. Hence, we used uniform distribution in the current study. 

Let (A ̃,B  ̃ )  be a Z-number,where Ã is a triangular number, (c-l , c , c+r), with a membership function as 

follows:  

𝐴(𝑥) = {

0                                𝑖𝑓      𝑥 < 𝑐 − 𝑙
(𝑥 − 𝑐 + 𝑙)/𝑙          𝑖𝑓      𝑐 − 𝑙 ≤ 𝑥 < 𝑐
(𝑐 + 𝑟 − 𝑥)/𝑟          𝑖𝑓      𝑐 ≤ 𝑥 ≤ 𝑐 + 𝑟
0                                𝑖𝑓     𝑥 > 𝑐 + 𝑟

                                    (4) 

On the other hand, B ̃, confidence, could be from the set {“Likely”, “Usually”, “Sure”} are modelled using 

the right hand fuzzy sets as follows (see Fig. 1)  

𝐵𝐿(𝑃) = {

0 𝑃 < 0.5
𝑃−0.5

0.1
0.5 ≤ 𝑃 ≤ 0.6

1 0.6 < 𝑃

                                                 (5) 

𝐵𝑈(𝑃) = {

0 𝑃 < 0.65
𝑃−0.65

0.1
0.65 ≤ 𝑃 ≤ 0.75

1 0.75 < 𝑃

                                              (6) 

𝐵𝑆(𝑃) = {

0 𝑃 < 0.8
𝑃−0.8

0.1
0.8 ≤ 𝑃 ≤ 0.9

1 0.9 < 𝑃

                                                (7) 

 
Fig 1. Fuzzy sets of linguistic reliability values. 

Assuming that the probability density function, f(x), is uniform as: 

𝑓(𝑥) =
1

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏.                                                          (8) 
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Therefore, based on equation (2), the probability of Ã is: 

𝑃 = ∫ 𝑓(𝑥)𝐴(𝑥)𝑑𝑥
𝑏

𝑎
=

1

𝑏−𝑎
∫ 𝐴(𝑥)𝑑𝑥
𝑚𝑖𝑛 (𝑏,𝑐+𝑟)

𝑚𝑎𝑥 (𝑎,𝑐−𝑙)
                                       (9) 

Now, having equation (9), P (the probability of Ã) can be determined based on the positions of a  and b 

relative to the fuzzy number Ã (Table 1). 

Table 1: The probability of Ã based on the positions of a and b relative to Ã 

C
a
teg

o
ry

 

positions of 

a and b 
Probability (Pi) 

1 
𝑎 ≤ 𝑐 − 𝑙 , 

𝑏 > 𝑐 + 𝑟 
𝑃1 =

𝑙 + 𝑟

2(𝑏 − 𝑎)
 

2 
𝑎 ≤ 𝑐 − 𝑙 , 

𝑐 ≤ 𝑏 ≤ 𝑐 + 𝑟 
𝑃2 =

𝑙

2(𝑏 − 𝑎)
+
(𝑏 − 𝑐)(2𝑟 + 𝑐 − 𝑏)

2(𝑏 − 𝑎)𝑟
 

3 
𝑎 < 𝑐 − 𝑙 , 

𝑏 < 𝑐 
𝑃3 =

(𝑏 − 𝑐 + 𝑙)2

2(𝑏 − 𝑎)𝑙
 

4 
𝑐 − 𝑙 < 𝑎 < 𝑐 , 

𝑐 ≤ 𝑏 < 𝑐 + 𝑟 
𝑃4 =

(𝑐 − 𝑎)(2𝑙 + 𝑎 − 𝑐)

2(𝑏 − 𝑎)𝑙
+
(𝑏 − 𝑐)(2𝑟 + 𝑐 − 𝑏)

2(𝑏 − 𝑎)𝑟
 

5 
𝑐 − 𝑙 ≤ 𝑎 ≤ 𝑐 , 

𝑏 < 𝑐 
𝑃5 =

𝑎 + 𝑏 − 2𝑐 + 2𝑙

2𝑙
 

6 
𝑐 ≤ 𝑎 ≤ 𝑐 + 𝑟 , 

𝑐 < 𝑏 < 𝑐 + 𝑟 
𝑃6 =

2𝑟 + 2𝑐 − 𝑎 − 𝑏

2𝑟
 

7 
𝑐 − 𝑙 < 𝑎 < 𝑐 , 

𝑐 + 𝑟 ≤ 𝑏 
𝑃7 =

(𝑐 − 𝑎)(2𝑙 + 𝑎 − 𝑐)

2𝑙(𝑏 − 𝑎)
+

𝑟

2(𝑏 − 𝑎)
 

8 
𝑐 ≤ 𝑎 ≤ 𝑐 + 𝑟 , 

𝑐 + 𝑙 ≤ 𝑏 
𝑃8 =

(𝑟 + 𝑐 − 𝑎)2

2𝑟(𝑏 − 𝑎)
 

 

3. Expected value of Z-number 

We recall for the uniform distribution (4) that 

𝐸(𝑥) = 𝜇 =
𝑎+𝑏

2
.                                                                (10) 

As discussed earlier, the parameters of the density function (a and b) are unknown and 𝜇, the expected value 

can be determined based on the given Z-number.  

Assuming a particular µ will lead to various pairs of (a,b) with the mean value of µ which can then be 

used to calculate probability of Ã according to Table 1. 

Example 1. Let a Z-number be ((24,30,36), Sure) which means fuzzy number (Ã) and confidence (𝐵̃)  

are (24,30,36) and “Sure” respectively. By assuming uniform distribution and µ=29, Fig. 2 depicts change 

in the probability of Ã for various pairs of (a,b)with the mean value of 29. 
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Fig 2. Changes in probability for µ = 29 

Fuzzy membership degrees of each (a,b) can be computed based on the membership function of 

confidence, 𝐵̃, in the Z-number. Since the level of confidence was set at “Sure”, membership values of 

ordered pairs (a,b), with the mean value of 29, was determined based on (7). Then an appropriate S-norm, 

here maximum, can be used to obtain the membership function G over the space µ ∈R : 

𝐺(𝜇) = 𝑚𝑎𝑥
(𝑎,𝑏)

{𝐵(𝑃(𝑎, 𝑏))|𝑎 + 𝑏 = 𝜇}, 𝜇 ∈ 𝑅,                                            (11) 

Since higher probability of (a,b) increases their membership degree in the confidence function, the (11) can 

be rewritten as: 

𝐺(𝜇) = 𝐵(𝑚𝑎𝑥{
(𝑎,𝑏)

𝑃(𝑎, 𝑏)|𝑎 + 𝑏 = 𝜇}), 𝜇 ∈ 𝑅                                          (12) 

Then we can first find the maximum probability of Ã with the particular 𝜇 and then compute its possibility 

by using equation (12). For example, In Example 1, the maximum probability of Ã with µ = 29 is 0.83. 

According to equation (7), the membership value of this event in the “Sure”  is 0.3.  

In order to find the maximum probability of Ã for different values of µ, we evaluated it in four intervals 

(Table 2). 

Table 2- Four intervals of µ to find the maximum PROBABILITY of Ã 

State Interval 

1  𝜇 ≤ 𝑐 −
𝑙

2
→ 𝑎 + 𝑏 ≤ 2𝑐 − 𝑙 

2  𝑐 − 𝑙/2 < 𝜇 ≤ 𝑐 → 2𝑐 − 𝑙 < 𝑎 + 𝑏 ≤ 2𝑐 

3  𝑐 < 𝜇 ≤ 𝑐 + 𝑟/2 → 2𝑐 < 𝑎 + 𝑏 ≤ 2𝑐 + 𝑟 

4  𝑐 +
𝑟

2
< 𝜇 → 2𝑐 + 𝑟 < 𝑎 + 𝑏 

If a and b fall in any of the eight categories summarized in Table 1, for particular 𝜇s, the maximum 

probability of Ã in the above-mentioned Intervals will be as follows: 

3.1 First Interval (µ ≤ c - 
𝒍

𝟐
)  

If a and b falling in the first category of Table 1, the maximum probability of Ã for µ ≤ c - 
𝑙

2
 is obtained 

as follows (Fig. 3): 

{
𝑎 ≤ 𝑐 − 𝑙
𝑏 > 𝑐 + 𝑟

→ 𝑃1 =
𝑙+𝑟

2(𝑏−𝑎)
=

𝑙+𝑟

4(𝑏−𝜇)
                                               (13) 

𝑑𝑃1

𝑑𝑏
=

−(𝑙+𝑟)

4(𝑏−𝜇)2
→
𝑑𝑃1

𝑑𝑏
< 0 → 𝑚𝑎𝑥𝑃1 =

𝑙+𝑟

4(𝑐+𝑟−𝜇)
                                     (14) 
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Fig 3. The area involved in calculation of the maximum probability (P1) when µ ≤ c - 𝑙/2   

When a and b belong to the second category of Table 1, the maximum probability of Ã  with µ ≤ c - 
𝑙

2
 is 

obtained as: 

{
𝑎 ≤ 𝑐 − 𝑙

𝑐 ≤ 𝑏 ≤ 𝑐 + 𝑟
→ 𝑃2 =

𝑙𝑟+(𝑏−𝑐)(2𝑟+𝑐−𝑏)

2(𝑏−𝑎)𝑟
                                             (15) 

𝑑𝑃2

𝑑𝑏
= 0 → 𝑏∗ = √(𝑐 + 𝑟 − 𝜇)2 − 𝑙𝑟 − 𝑟2 + 𝜇                                        (16) 

In other words, if no restriction is imposed, the maximum of P2 based on b will occur at a point like b*. 

Theorem 1. If µ ≤ c - 
𝑙

2
, then b* ≥ c 

Proof by contradiction: If b*< c, then 

𝑏∗ < 𝑐 → √(𝑐 + 𝑟 − 𝜇)2 − 𝑙𝑟 − 𝑟2 + 𝜇 < 𝑐 → (𝑐 + 𝑟 − 𝜇)2 − 𝑙𝑟 − 𝑟2 < (𝑐 − 𝜇)2 →  

𝑐 −
𝑙

2
< 𝜇 

Which is a contradiction since we had an initial assumption of µ ≤ c - 
𝑙

2
. Therefore, b* ≥ c is correct. 

Now, the maximum of P2 based on b and the position of b*can be determined as (Fig. 4): 

𝑚𝑎𝑥𝑃2 = {

𝑙𝑟+(𝑏∗−𝑐)(2𝑟+𝑐−𝑏∗)

4(𝑏∗−𝜇)𝑟
𝑐 < 𝑏∗ < 𝑐 + 𝑟

𝑙+𝑟

2(𝑐+𝑟−𝜇)
𝑐 + 𝑟 ≤ 𝑏∗

                                  (17) 

 
Fig 4.The area involved in calculation of the maximum probability (P2) withµ ≤ c - 𝑙/2 

If a and b fit in the third category of Table 1, the maximum probability of Ã with µ ≤ c - 
𝑙

2
 can be calculated 

as (Fig. 5): 

{
𝑎 < 𝑐 − 𝑙
𝑏 < 𝑐

→ 𝑃3 =
(𝑏 − 𝑐 + 𝑙)2

4(𝑏 − 𝜇)𝑙
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𝑑𝑃3
𝑑𝑏

=
(−𝑎 + 𝑐 − 𝑙)(𝑏 − 𝑐 + 𝑙)

4𝑙(𝑏 − 𝜇)2 𝑎<𝑐−𝑙→(−𝑎+𝑐−𝑙)>0
𝑏>𝑐−𝑙→(𝑏−𝑐+𝑙)>0

⇒               
𝑑𝑃3
𝑑𝑏

> 0 → 

𝑚𝑎𝑥𝑃3 =
(𝑐−𝑐+𝑙)2

4(𝑐−𝜇)𝑙
=

𝑙

4(𝑐−𝜇)
                                                           (18) 

 
Fig 5. The area involved in calculation of the maximum probability (P3) when µ ≤ c - 𝑙/2 

With a and b lying in the fourth category of Table 1, the maximum probability of Ã with µ ≤ c - 
𝑙

2
 can be 

computed as: 

{
𝑐 − 𝑙 < 𝑎 < 𝑐
𝑐 ≤ 𝑏 < 𝑐 + 𝑟

→ 2𝑐 − 𝑙 < 𝑎 + 𝑏 < 2𝑐 + 𝑟 → 𝑐 − 𝑙/2 < 𝜇 → 𝑃4 = 0                    (19) 

The maximum probability of Ã with µ ≤ c - 
𝑙

2
 when a and b belong to the fifth category of Table 1 is 

determined as (Fig. 6): 

{
𝑐 − 𝑙 ≤ 𝑎 ≤ 𝑐

𝑏 < 𝑐
→ 𝑃5 =

𝑎+𝑏−2𝑐+2𝑙

2𝑙
=
𝜇−𝑐+𝑙

𝑙 𝑃5=𝑐𝑡𝑒
⇒    𝑚𝑎𝑥𝑃5 =

𝜇−𝑐+𝑙

𝑙
                        (20) 

 
Fig 6. The area involved in calculation of the maximum probability (P5) when µ ≤ c - 𝑙/2 

The maximum probability of Ã with µ ≤ c - 
𝑙

2
 when a and b fall into the sixth-eighth categories of Table 1 

can be defined as: 

{
𝑐 − 𝑟 < 𝑎 < 𝑐
𝑐 + 𝑟 ≤ 𝑏

→ 2𝑐 < 𝑎 + 𝑏
𝑎+𝑏≤2𝑐−𝑟
⇒       𝑃7 = 0                                   (21) 

{
𝑐 ≤ 𝑎 ≤ 𝑐 + 𝑟
𝑐 + 𝑟 ≤ 𝑏

→ 2𝑐 + 𝑟 < 𝑎 + 𝑏
𝑎+𝑏≤2𝑐−𝑟
⇒       𝑃8 = 0                               (22) 

Therefore, according to equations (14),0, 错误!未找到引用源。, and (20), when µ ≤ c - 
𝑙

2
, the maximum 

probability of Ã can be stated as: 

𝑚𝑎𝑥𝑃(𝜇) = 𝑚𝑎𝑥{𝑚𝑎𝑥𝑃1, 𝑚𝑎𝑥𝑃2, 𝑚𝑎𝑥𝑃3, 𝑚𝑎𝑥𝑃5}                              (23) 

And based on 0: 
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𝑚𝑎𝑥𝑃(𝜇) = {
𝑚𝑎𝑥 {

𝑙+𝑟

4(𝑐+𝑟−𝜇)
,

𝑙

4(𝑐−𝜇)
,
𝜇−𝑐+𝑙

𝑙
} 𝑐 + 𝑟 ≤ 𝑏∗

𝑚𝑎𝑥 {
𝑙𝑟+(𝑏∗−𝑐)(2𝑟+𝑐−𝑏∗)

4(𝑏∗−𝜇)𝑟
,
𝜇−𝑐+𝑙

𝑙
} 𝑐 < 𝑏∗ < 𝑐 + 𝑟

                   (24) 

If c + r ≤ b*, then: 

𝑙

4(𝑐−𝜇)
−
𝜇−𝑐+𝑙

𝑙
=
𝑙2−4(𝑐−𝜇)(𝜇−𝑐+𝑙)

4𝑙(𝑐−𝜇)
=
(𝑙−2(𝑐−𝜇))

2

4𝑙(𝑐−𝜇)
> 0 →

𝑙

4(𝑐−𝜇)
>
𝜇−𝑐+𝑙

𝑙
                 (25) 

and 
𝑙

4(𝑐 − 𝜇)
−

𝑙 + 𝑟

4(𝑐 + 𝑟 − 𝜇)
=
𝑟

4
×

(𝑙 − 𝑐 + 𝜇)

(𝑐 + 𝑟 − 𝜇)(𝑐 − 𝜇)
 

Now, two cases may occur: 

① 𝜇 ≤ 𝑐 − 𝑙 → {
−𝑐 + 𝑟 + 𝜇 ≤ 0
𝑐 + 𝑟 − 𝜇 > 0
𝑐 − 𝜇 > 0

→
𝑙

4(𝑐 − 𝜇)
<

𝑙 + 𝑟

4(𝑐 + 𝑟 − 𝜇)
 

② 𝑐 − 𝑙 < 𝜇 ≤ 𝑐 − 𝑙/2 → {
−𝑐 + 𝑙 + 𝜇 > 0
𝑐 + 𝑟 − 𝜇 > 0
𝑐 − 𝜇 < 0

→
𝑙

4(𝑐 − 𝜇)
<

𝑙 + 𝑟

4(𝑐 + 𝑟 − 𝜇)
 

Hence, in both cases, the following is true: 
𝑙

4(𝑐−𝜇)
<

𝑙+𝑟

4(𝑐+𝑟−𝜇)
                                                      (26) 

Based on (26)-(27), it can be concluded that: 

𝑚𝑎𝑥 {
𝑙+𝑟

4(𝑐+𝑟−𝜇)
,

𝑙

4(𝑐−𝜇)
,
𝜇−𝑐+𝑙

𝑙
} =

𝑙+𝑟

4(𝑐+𝑟−𝜇)
                                        (27) 

Or: 

{
𝜇 ≤ 𝑐 − 𝑙/2
𝑐 + 𝑟 ≤ 𝑏∗

→ 𝑚𝑎𝑥𝑃(𝜇) = 𝑚𝑎𝑥𝑃2 = 𝑚𝑎𝑥𝑃1 =
𝑙+𝑟

4(𝑐+𝑟−𝜇)
                       (28) 

If c < b*< c + r, then equation (17) entails that: 
𝑙𝑟 + (𝑏∗ − 𝑐)(2𝑟 + 𝑐 − 𝑏∗)

4(𝑏∗ − 𝜇)𝑟
>
𝜇 − 𝑐 + 𝑙

𝑙
 

So 

{
𝜇 ≤ 𝑐 −

𝑙

2

𝑐 < 𝑏∗ < 𝑐 + 𝑟
→ 𝑚𝑎𝑥𝑃(𝜇) = 𝑚𝑎𝑥𝑃2 =

𝑙𝑟+(𝑏∗−𝑐)(2𝑟+𝑐−𝑏∗)

4(𝑏∗−𝜇)𝑟
                     (29) 

Finally, under the first condition, µ ≤ c - 
𝑙

2
, equations (27) and (29) indicate that: 

𝜇 ≤ 𝑐 −
𝑙

2
→ 𝑚𝑎𝑥𝑃(𝜇) = 𝑚𝑎𝑥𝑃2                                            (30) 

3.2 Second Interval (c - 
𝐥

𝟐
< µ ≤ c) 

According to equation (14), the maximum probability of Ã with c - 
𝑙

2
<µ ≤ c when a and b belong to the 

first category of Table 1 is (Fig. 7): 

{
𝑎 ≤ 𝑐 − 𝑙
𝑏 > 𝑐 + 𝑟

→ 𝑚𝑎𝑥𝑃1 =
𝑙+𝑟

4(𝑐+𝑟−𝜇)
                                             (31) 

 
Fig 7.  The area involved in calculation of the maximum probability (P1) when c - 𝑙/2< µ ≤ c 

With a and b fitting into the second category of Table 1, the maximum probability of Ã with c - 
𝑙

2
<µ ≤ c can 

be obtained based on equations (15) and (17): 
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{
𝑎 ≤ 𝑐 − 𝑙

𝑐 ≤ 𝑏 ≤ 𝑐 + 𝑟
→ 𝑃2 =

𝑙𝑟+2𝑏𝑟+2𝑏𝑐−𝑏2−2𝑐𝑟−𝑐2

4(𝑏−𝜇)𝑟
                                  (32) 

𝑑𝑃2

𝑑𝑏
= 0 → 𝑏∗ = √(𝑐 + 𝑟 − 𝜇)2 − 𝑙𝑟 − 𝑟2 + 𝜇                                 (33) 

Which leads to three distinct conditions: 

{
 
 

 
 𝑏∗ ≤ 𝑐 →

𝑑𝑃2

𝑑𝑏
< 0 → 𝑚𝑎𝑥𝑃2 =

𝑙

4(𝑐−𝜇)

𝑐 < 𝑏∗ < 𝑐 + 𝑟 → 𝑚𝑎𝑥𝑃2 =
𝑙𝑟+(𝑏∗−𝑐)(2𝑟+𝑐−𝑏∗)

4(𝑏∗−𝜇)𝑟

𝑐 + 𝑟 ≤ 𝑏∗ →
𝑑𝑃2

𝑑𝑏
> 0 → 𝑚𝑎𝑥𝑃2 =

𝑙+𝑟

4(𝑐+𝑟−𝜇)

                                     (34) 

 
Fig 8. The area involved in calculation of the maximum probability (P2) when c - 𝑙/2< µ ≤ c 

When a and b fall into the third category of Table 1, the maximum probability of Ã with c - 
𝑙

2
<µ ≤ c can be 

determined as: 

{
𝑎 < 𝑐 − 𝑙
𝑏 < 𝑐

→ 𝑎 + 𝑏 < 2𝑐 − 𝑙 → 𝜇 < 𝑐 − 𝑙/2 → 𝑚𝑎𝑥𝑃3 = 0                      (35) 

The maximum probability of Ã with c - 
𝑙

2
<µ ≤ c when a and b belong to the fourth category of Table 1 will 

be: 

{
𝑐 − 𝑙 < 𝑎 < 𝑐
𝑐 ≤ 𝑏 < 𝑐 + 𝑟

→ 𝑃4 =
(𝑐−𝑎)(2𝑙+𝑎−𝑐)

4(𝑏−𝜇)𝑙
+
(𝑏−𝑐)(2𝑟+𝑐−𝑏)

4(𝑏−𝜇)𝑟
                         (36) 

 

Fig 9.  The area involved in calculation of the maximum probability (P4) when c - 𝑙/2< µ ≤ c 
With a and b lying in the fifth category of Table 1, the maximum probability of Ã with c - 

𝑙

2
<µ ≤ c can be 

calculated as: 

{
𝑐 − 𝑙 ≤ 𝑎 ≤ 𝑐

𝑏 < 𝑐
→ 𝑚𝑎𝑥𝑃5 =

𝜇−𝑐+𝑙

𝑙
                                                (37) 
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Fig 10. The area involved in calculation of the maximum probability (P5) when c - 𝑙/2< µ ≤ c 

Theorem 2. P5> P4 is always true. 

Proof: 

𝑃5 − 𝑃4 =
𝑟(𝑏 − 𝑐)2 + 𝑙(𝑏 − 𝑐)2

4(𝑏 − 𝜇)𝑙𝑟
≥ 0 → 𝑃5 ≥ 𝑃4 

Finally, the maximum probability of Ã with c - 
𝑙

2
<µ ≤ c when a and b belong to the sixth, seventh and 

eighth categories of Table 1 can be stated as: 

{
𝑐 ≤ 𝑎 ≤ 𝑐 + 𝑟
𝑐 < 𝑏 < 𝑐 + 𝑟

→ 2𝑐 < 𝑎 + 𝑏
𝑎+𝑏≤2𝑐
⇒     𝑃6 = 0                                          (38) 

{
𝑐 − 𝑟 < 𝑎 < 𝑐
𝑐 + 𝑟 ≤ 𝑏

→ 2𝑐 < 𝑎 + 𝑏
𝑎+𝑏≤2𝑐
⇒     𝑃7 = 0                                          (39) 

{
𝑐 ≤ 𝑎 ≤ 𝑐 + 𝑟
𝑐 + 𝑟 ≤ 𝑏

→ 2𝑐 + 𝑟 < 𝑎 + 𝑏
𝑎+𝑏≤2𝑐
⇒     𝑃8 = 0                                      (40) 

According to the equation (34): 

𝑚𝑎𝑥𝑃2 ≥ 𝑚𝑎𝑥𝑃1                                                               (41) 

And based on Theorem 2: 

𝑚𝑎𝑥𝑃5 ≥ 𝑚𝑎𝑥𝑃4                                                                (42) 

Therefore, when c - 
𝑙

2
<µ ≤ c, equations (41) and (42) lead to the following equation: 

𝑚𝑎𝑥𝑃(𝜇) = 𝑚𝑎𝑥{𝑚𝑎𝑥𝑃2, 𝑚𝑎𝑥𝑃5}                                               (43) 

Theorem 3. If c - 
𝑙

2
<µ ≤ c, then P5>P2 is always true. 

Proof: 

𝑃2 − 𝑃5 =
−4𝑟(𝜇 − 𝑎 − 𝑙/2)(𝜇 − 𝑐 + 𝑙/2) − 𝑙(𝑏 − 𝑐)2

2(𝑏 − 𝑎)𝑟𝑙
{
𝑐−𝑙/2<𝜇≤𝑐→𝑐−𝑙<𝜇−𝑙/2

𝑎<𝑐−𝑙
→{

0<𝜇−𝑐+𝑙/2

0<𝜇−
𝑙

2
−𝑎

⇒                              𝑃2 − 𝑃5 < 0

→ 𝑃5 > 𝑃2 

Based on Theorem 3 if c- 
𝑙

2
<µ ≤ c, then maxP5>maxP2 is always true. 
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Hence, when c - 
𝒍

𝟐
< µ ≤ c, it can be concluded that: 

𝑐 −
𝑙

2
< 𝜇 ≤ 𝑐 → 𝑚𝑎𝑥𝑃(𝜇) = 𝑚𝑎𝑥𝑃5                                       (44) 

3.3 Third Interval (𝒄 < 𝝁 ≤ 𝒄 + 𝒓/𝟐) 

With calculations Similar to second interval, we have: 

𝑐 < 𝜇 ≤ 𝑐 +
𝑟

2
→ 𝑚𝑎𝑥𝑃(𝜇) = 𝑚𝑎𝑥𝑃6 =

𝑟+𝑐−𝜇

𝑟
                               (45) 

3.4 Forth Interval (𝐜 + 𝐫/𝟐 < 𝛍) 

With calculations Similar to first interval, we have: 

𝑐 +
𝑟

2
< 𝜇 → 𝑚𝑎𝑥𝑃(𝜇) = 𝑚𝑎𝑥𝑃7                                              (46) 

Maximum of P7 can be computed as: 

𝑚𝑎𝑥𝑃7 =

{
 

 
𝑙𝑟 + (𝑐 − 𝑎∗)(2𝑙 + 𝑎∗ − 𝑐)

−4𝑙(𝜇 − 𝑎∗)
𝑐 − 𝑙 < 𝑎∗ < 𝑐

𝑙 + 𝑟

4(𝑐 − 𝑙 − 𝜇)
𝑎∗ < 𝑐 − 𝑙

 

Where 

𝑎∗ = √(𝜇 − 𝑐 + 𝑙)2 − 𝑙𝑟 − 𝑙2 + 𝜇 

Now, according to the equations (30) and (44)-(46), it can be inferred that: 

𝑚𝑎𝑥𝑃(𝜇) = {

𝑚𝑎𝑥𝑃2 𝜇 ≤ 𝑐 − 𝑙/2
𝑚𝑎𝑥𝑃5 𝑐 − 𝑙/2 < 𝜇 ≤ 𝑐
𝑚𝑎𝑥𝑃6 𝑐 < 𝜇 ≤ 𝑐 + 𝑟/2
𝑚𝑎𝑥𝑃7 𝑐 + 𝑟/2 < 𝜇

                                                (47) 

Theorem 4. Minimum of maxP5 equals 0.5. 

Proof: 

𝑚𝑎𝑥𝑃5 =
𝜇−𝑐+𝑙

𝑙
→
𝑑𝑚𝑎𝑥𝑃5

𝑑𝜇
> 0

𝜇=𝑐−
𝑙

2

⇒    
𝑐−

𝑙

2
−𝑐+𝑙

𝑙
= 0.5                                      (48) 

Theorem 5. Minimum of maxP6 equals 0.5. 

Proof: Similar to Theorem 4. 

 
Fig 11. The maximum probability curve for the constant mean (µ) for Example 1 

After calculating the maximum probability of Ã, the membership function of the µ at three levels of the 

possibility (L, U, and S) can be computed using equations (5)-(7). 
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4. Calculating the membership function of the expected value of Z-number (µ) 

By replacing probability values (P), obtained from equation (47), in relevant equation of (5)-(7), the 

membership function of the µ can be determined. 

𝐺𝜇̃𝐿(𝑝) =

{
 
 

 
 

0 𝑝 < 𝑐 − 0.5𝑙
𝑝−𝑐+0.5𝑙

0.1𝑙
𝑐 − 0.5𝑙 ≤ 𝑝 < 𝑐 − 0.4𝑙

1 𝑐 − 0.4𝑙 ≤ 𝑝 < 𝑐 + 0.4𝑟
𝑐+0.5𝑟−𝑝

0.1𝑟
𝑐 + 0.4𝑟 ≤ 𝑝 < 𝑐 + 0.5𝑟

0 𝑐 + 0.5𝑟 ≤ 𝑝

                                       (49) 

𝐺𝜇̃𝑈(𝑝) =

{
 
 

 
 

0 𝑝 < 𝑐 − 0.35𝑙
𝑝−𝑐+0.35𝑙

0.1𝑙
𝑐 − 0.35𝑙 ≤ 𝑝 < 𝑐 − 0.25𝑙

1 𝑐 − 0.25𝑙 ≤ 𝑝 < 𝑐 + 0.25𝑟
𝑐+0.35𝑟−𝑝

0.1𝑟
𝑐 + 0.25𝑟 ≤ 𝑝 < 𝑐 + 0.35𝑟

0 𝑐 + 0.35𝑟 ≤ 𝑝

                                  (50) 

𝐺𝜇̃𝑆(𝑝) =

{
 
 

 
 

0 𝑝 < 𝑐 − 0.2𝑙
𝑝−𝑐+0.2𝑙

0.1𝑙
𝑐 − 0.2𝑙 ≤ 𝑝 < 𝑐 − 0.1𝑙

1 𝑐 − 0.1𝑙 ≤ 𝑝 < 𝑐 + 0.1𝑟
𝑐+0.2𝑟−𝑝

0.1𝑟
𝑐 + 0.1𝑟 ≤ 𝑝 < 𝑐 + 0.2𝑟

0 𝑐 + 0.2𝑟 ≤ 𝑝

                                     (51) 

Thus, the µ in L, U, and S levels of the confidence are trapezoidal fuzzy numbers shown as: 

𝜇̃𝐿 = (𝑐 − 0.5𝑙, 𝑐 − 0.4𝑙, 𝑐 + 0.4𝑟, 𝑐 + 0.5𝑟)                                       (52) 

𝜇̃𝑈 = (𝑐 − 0.35𝑙, 𝑐 − 0.25𝑙, 𝑐 + 0.25𝑟, 𝑐 + 0.35𝑟)                                 (53) 

𝜇̃𝑆 = (𝑐 − 0.2𝑙, 𝑐 − 0.1𝑙, 𝑐 + 0.1𝑟, 𝑐 + 0.2𝑟)                                     (54) 

This result for Example1 is 

𝐺𝜇̃(𝑝) =

{
 
 

 
 

0 𝑝 < 28.8
𝑝−28.8

0.6
28.8 ≤ 𝑝 < 29.4

1 29.4 ≤ 𝑝 < 30.6
31.2−𝑝

0.6
30.6 ≤ 𝑝 < 31.2

0 31.2 ≤ 𝑝

                                         (55) 

Or the fuzzy expected value is: 𝜇̃ = (28.8 , 29.4 , 30.6 , 31.2). 

We can compare this result with fuzzy expectation proposed by Kang et al [6]. In their method first, the 

reliability of Z-number (𝐵̃) is converted to crisp number with the center of gravity method. 

𝛼 =
∫𝑥𝜇𝑆(𝑥)𝑑𝑥

∫ 𝜇𝑆(𝑥)𝑑𝑥
= 0.922 

Then the weighted Z-number is obtained by adding the 𝛼  to the first part (Ã). 

(Ã , α) =((24,30,36);0.922). 

Finally, weighted Z-number is converted to regular fuzzy number: 

𝜇̃ = (√0.922 ∗ 24, √0.922 ∗ 30, √0.922 ∗ 36) = (28.8, 5.76, 5.76)   
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Fig 12.The membership function of the possibility ofµ 

As you can see in equations (52)-(54), in this approach the more reliability results smaller support set of 

the obtained fuzzy expected value. Also the center of the first part of Z-number (Ã) doesn’t change in this 

approach, however using the Kang et al [6] method, if the first part of Z-number (Ã) is positive, the more 

reliability results the smaller fuzzy expectation, without any reason. 

5. Conclusion 

The main contribution of the present paper is converting a Z-number to a fuzzy number which is very 

significant for application. Hence the probability density function of uncertain variable, X, in Z-valuation 

(X, 𝐴̃ , 𝐵̃)  is unknown, according to Zadeh’s simplifying assumption, a particular set of parametric 

distributions can be applied based on available knowledge about the variable. But when the knowledge 

available is not sufficient, the uniform distribution is proposed for a poorly known variable. Therefore, in 

practice, most applications use linear membership functions to describe fuzzy sets, in this study linear right-

hand membership functions are used for reliability values. With above assumptions, that is proved that the 

fuzzy expected value of a Z-number is a trapezoidal fuzzy number. 
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