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Abstract. This paper deals with the finite-time chaos synchronization of the delay Lorenz system with 

disturbance via a single controller. Based on the finite-time stability theory, a control law is proposed to 

realize finite-time chaos synchronization of delay Lorenz system with disturbance. Finally, numerical 

simulation results are given to demonstrate the effectiveness and robustness of the proposed scheme. 
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1. Introduction  

Chaos synchronization has attracted much attention of many researches since the seminal work of 

Pecora and Carroll [1]. From then on, chaos synchronization has been developed extensively and intensively 

due to its potential application in many fields, such as secure communication [2, 3], complex networks [4-7], 

biotic science [8-13] and so on [14-26]. 

Nowadays, most of the results about chaos control and synchronization are derived based on the 

asymptotic stability of the chaotic systems. In fact, it is more valuable to control or synchronize chaotic 

systems as fast as possible. To obtain faster convergence, the finite-time control approach is an effective 

technique. Moreover, the finite-time techniques have demonstrated better robustness and disturbance 

rejection properties than that of asymptotic methods [27-37]. Therefore, the finite-time chaos control and 

synchronization have attracted a great deal of attention over the last few decades.  

On the other hand, it is difficult to know the external disturbance always occurs in the system. Thus, the 

chaos control and synchronization of chaotic system in the presence of external disturbance are effectively 

crucial in practical applications. 

In this paper, we present a controller to realize finite-time synchronization of delay Lorenz system with 

disturbance. The controller is robust and simple to be constructed. Numerical simulations are presented to 

demonstrate the effectiveness and robustness of the proposed scheme. 

 

2. Preliminary definitions and lemmas 

Finite-time synchronization means that the state of the slave system can track the state of the master 

system after in finite-time. The precise definition of finite-time synchronization is given as below. 

Definition 1. Consider the following two chaotic systems: 

)( mm xfx 
, 

),( sms xxhx 
,                                                                (1) 

where sm xx ,
are two n -dimensional state vectors. The subscripts ‘m’ and ‘s’ stand for the master and 

slave systems, respectively. 
nn RRf : and 

nn RRh : are vector-valued functions. If there exists a 

constant 0T , such that  

0lim 


sm
Tt

xx
, 

and  

,0 sm xx
 if Tt  , 

then synchronization of the system (1) is achieved in a finite-time. 
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Lemma 1 [32]. Assume that a continuous, positive-definite function )(tV  satisfies differential 

inequality  

),()( tcVtV  0)(, 00  tVtt
,                                           (2) 

where 0c  , 0 1  are constants, then, for any given 0t , )(tV  satisfies inequality 

),)(1()()( 00

11 ttctVtV   

10 ttt 
,                                  (3) 

and 

0)( tV , 1tt  ，                                                                  (4) 

with 1t  given by 

                  )1(

)( 0

1

01









c

tV
tt

.                                                                   (5) 

Proof. Consider differential equation 

),()( tcXtX  )()( 00 tVtX 
,                                              (6) 

although differential equation (6) does not satisfy the global Lipschitz condition, the unique solution of 

Eq.(6) can be found as 
1 1

0 0( ) ( ) (1 )( )X t X t c t t      
.                                             (7) 

Therefore, from the comparison Lemma, one obtains 
1 1

0 0( ) ( ) (1 )( ),V t V t c t t      
10 ttt 
,                                     (8) 

and 

( ) 0V t  , 1t t 
. 

with 1t  given in (5). 

Lemma 2 [34]. If 

2

3
2

3
 （ ） , it can be gotten that  

3

2 2
1 2 1 2

1
0

2
x x x x   （ ） ,                                                        (9) 

where 1x  and 2x  are any real numbers . 

Corollary 1 [34]. If 

2

3
2

3
 （ ）  , it can be obtained that  

                 

3

2 2
1 2 1 2

1

2
x x x x （ ）,                                                       (10) 

where 1x  and 2x  are any real numbers . 

3. Main results 

A chaotic system is extremely sensitive to disturbance. In actual situation, the system is disturbed and 

cannot be exactly predicted. These uncertainties will destroy the synchronization and even break it. 

Therefore, it is important and necessary to study the synchronization of systems with disturbance. In this 

section, the dynamic behaviors of the delay Lorenz system is to be explored and the finite-time 

synchronization of the delay Lorenz systems will be discussed. 

3.1 Dynamics of delay Lorenz system with disturbance  

Delay Lorenz system with disturbance is considered as 

1 2 1( )x a x x 
, 

2 1 2 1 3 2 sin( )x cx x x x Ax t   
, 

3 1 2 3x x x bx t   （ ）
,                                                                 (11) 
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where a , b , c ,  , A ,  are real positive constants. In this section, initial conditions of system (11) is 

chosen as ( 0.12, 0.4, 0.7)    and the parameters of the system are selected as 10a  , 3b , 28c  , 

0.001A , 0.01  . Figs.1-4 depict the dynamics of system (11) for different values of . Fig.1 and Fig.3 

indicate that the delay Lorenz system with disturbance is chaotic for certain values of . Fig.2 shows that the 

system has periodic-1 solution for 24.0 . Fig.4 reflects that the system has periodic-2 solution for

37.0 . 

 
Fig.1. The phase portrait and time series of variables in system (11) for 0019.0 , (a) phase portrait 

of 1x  and 2x , (b) time series of 1x . 

 
Fig.2. The phase portrait and time series of variables in system (11) for 24.0 , (a) phase portrait of 

1x  and 2x , (b) time series of 1x . 

 
Fig.3. The phase portrait and time series of variables in system (11) for 25.0 , (a) phase portrait of 

1x  and 2x , (b) time series of 1x . 



Journal1 Information and Computing Science, Vol. 12(2017) No. 4, pp 312-320 

 

 

JIC email for subscription: publishing@WAU.org.uk 

315 

 
Fig.4. The phase portrait and time series of variables in system (11) for 37.0 , (a) phase portrait of 

1x  and 2x , (b) time series of 1x . 

3.2 Chaos synchronization of delay Lorenz system with disturbance 

System (11) is considered as the master system and the slave system is a controlled system as  

1 2 1( )y a y y 
, 

2 1 2 1 3 2 2sin( )y cy y y y Ay t u    
, 

3 1 2 3y y y by t   （ ）
.                                                      (12) 

Let 111 xye  , 222 xye  , 333 xye  , and subtract Eq.(11) from Eq.(12), the error system 

between systems (11) and (12) can be gotten as 

1 2 1( )e a e e 
, 

2 1 1 3 1 3 1 3 2 2 sin( )e ce e e e y y e e Ae t u      
, 

3 1 2 1 2 1 2 3( )e e e e y y e be t      
.                                                  (13) 

Our aim is to design a controller that can achieve the finite-time synchronization of the delay Lorenz 

system (11) and the controlled system (12). The problem can be converted to design a controller to attain 

finite-time stable of the error system (13).  

To achieve the finite-time stabilization, the controller u is taken as 

1 1 3 1 3 1 3 2 1 1 2 2 3 3( ) ( ) ( )u ce e e e y y e e k sign e k sign e k sign e        
,               (14) 

where 1k , 2k , 3k are positive parameters to be designed. 

Substitute (14) into (13), we can get the closed-loop plant dynamics 

1 2 1( )e a e e 
, 

2 2 1 1 2 2 3 3sin( ) ( ) ( ) ( )e Ae t k sign e k sign e k sign e   
, 

3 1 2 1 2 1 2 3( )e e e e y y e be t      
.                                                  (15) 

Choose a candidate Lyaupunov function for the system (15) as  
3

2 2
1 2 1 2

1

2
V e e e e  （ ）

, 

then the derivative of V  along the trajectory of (15) can be derived as 
1

2 2
1 2 1 1 2 2 1 2 1 2

3 1
( ( ) )

2 2
V e e sign e e e e e e e e     （ ）

  
1

2 2
1 2 1 2 1 2 2 1 1

3 1
( [ ( ) ( sin( ) ( )

2 2
e e sign e a e e e Ae t k sign e      ） （ ）

 

2 2 3 3 2 1 2 1 2 1 1( ) ( ))] ( ) [ sin( ) ( )k sign e k sign e a e e e e Ae t k sign e     
   2 2 3 3( ) ( )]k sign e k sign e 
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1

2 2
1 2 2 1 1 2 2 2 2

3 1
[( ) ( ) ( )sin( )

2 2
e e e k a sign e e Ae sign e t k       （ ）

 
2

3 2 3 2 1 2 1 1 2 1 2( ))] [ sin( ) ( ) ( )k sign e e ae e Ae t sign e k k sign e e    
3 1 3 2 1( ) ( )]k sign e e ae sign e 

. 

Let 1 2 3 0AM k k k aM     
, 1 0a k  

, 1 2 3 0k a AM k k    
, 2e M

, then we have 
1

2 22
1 2 2 1 2 3 2 1 1 2 3

3 1
[ ] [ ]

2 2
V e e e k a AM k k ae e AM k k k aM              （ ）

. 

Let  

1 2 3

2
2

3
u k a AM k k a     

, 

1 2 3v AM k k k aM     
, 

then we can arrive  

2

2 1

3

2 2
V ue v e  

 
23

2 32
1 2

1
[( ) ]

2
m e e  

,                                                                                                                    (16) 

where 
3

min ,
2

v u
m



 
  

 
. 

Based on Corollary 1, we have 

          

3 3

2 22 2
1 2 1 2 1 2

1 1
( ) 2(( ) )

2 2
e e e e e e     .                                         (17) 

Substituting (16) into (15) leads to the inequation 
2

2 2 3
1 2 1 22

3

1 1
[( ) ]

2
2

V m e e e e    =
2

3V ,                                       (18) 

where 2

3

1

2

m  . 

By solving the above inequality, one gets  
1

33
0( ) ( )

3

t
V t V


  .                                                                    (19) 

Due to ( ) 0V t  , it follows that 

1

3
0

3

t
V


 , which means that 

1

3
0

3
t V


 . Therefore, there exists 

constant 

1

3
1 0

3
T V


  such that 

2 2
1 2lim lim 0

t T t T
e e

 
  . Based on the second of system (15), we can conclude that 

2 2
1 2lim lim 0

t T t T
e e

 
  implies

2
3lim 0

t T
e


 . From Lemma 1, the error system (15) is finite-time stable. That is to 

say 1 2 30, 0, 0e e e    after a finite-time 1T . Therefore, when 1t T , 11 xy  , 22 xy  , 3 3y x . 

 

4. Simulation results 

In this section, initial conditions of the master system and slave system are chosen as 

( 0.12, 0.4, 0.7)    and ( 0.13, 0.38, 0.71)   , respectively. The system parameters of are taken as

10a  , 3b , 28c  , 0.001A , 0.01  , 1 0.0021k  ,
2 0.001k  , 

3 0.001k  . Fig.5 and Fig.6 show 
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the dynamical behaviors of error systems of the delay Lorenz system with different , which proves 

that time-delay has influence on synchronous time. 

 
Fig.5. Synchronization errors of the delay Lorenz system when 0.0019  . 

 
Fig.6. Synchronization errors of the delay Lorenz system when 0.25  . 

 

 

5. Conclusion 

This paper is concerned with finite-time synchronization of the delay Lorenz systems with disturbance. 

Based on the finite-time stability theory, a control law is proposed to realize finite-time chaos 

synchronization of the delay Lorenz systems with disturbance via a single controller. Finally, numerical 

simulations are given to demonstrate the effectiveness and robustness of the proposed scheme. From the 

proof process we can see that the proposed method can be extended to other systems. 
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