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Abstract. Partial differential equations are fundamental in modeling several natural phenomena. The 

present work is designed for the Wavelet based numerical solution of linear and non-linear parabolic partial 

differential equations using lifting scheme. To demonstrate the efficiency and competence of the proposed 

scheme, we used both orthogonal and biorthogonal wavelets. This scheme speeds up convergence in lesser 

computational time as compared with existing schemes. Some test problems are presented for the validity and 

applicability of the scheme. 

Keywords:  Parabolic partial differential equations: Lifting scheme; Orthogonal and                     

Biorthogonal wavelets. 

1. Introduction  

 In recent years there has been much attention for finding the numerical solution of partial differential 

equations (PDEs). In general parabolic PDEs with or without reaction terms are used as a fundamental tool 

to model a wide class of phenomena occurring in physical and biological sciences, such as Heat equation, 

Wave equation, Fisher’s equation, Cahn-Allen equation, Burgers equation and many other important 

equations. These equations are usually difficult to solve analytically, so these are required to obtain efficient 

approximate solutions. The importance of obtaining the exact or approximate solutions of nonlinear partial 

differential equations in physics and mathematics is still a significant problem that needs new methods to 

discover exact or approximate solutions.  Due to this, there is a demand on the development of accurate and 

efficient analytical or numerical methods able to deal with these equations.   

 Recently, some of the iterative methods are used for the numerical and analytical solutions of Linear 

and Nonlinear partial differential equations. For example, He’s variational iteration technique [1], the 

homotopy perturbation method [2], Adomian decomposition method [3] etc. Mathematical models of basic 

flow equations which describe unsteady transport problems are governed by a single or a system of 

nonlinear PDEs.  

Analytical solution of certain parabolic PDEs either does not exist or is hard to find.  Due to this fact, in the 

last decades, there have been great advances in the development of finite difference, finite element, spectral 

techniques and finite volume methods for the solution of parabolic PDEs. The parabolic PDEs of the forms 

[4], 

                                            ( ), 0 1, 0t xxu u f u x t                                                   (1.1) 

( , ), 0 1, 0t xxu u g x t x t                                                    (1.2) 

subject to initial condition (IC) and boundary conditions (BCs). Where   and    are the functions of 

dependent and independent variables. 

 The purpose of this paper is to give a numerical solution for a class of linear and non-linear parabolic 

partial differential equations by Lifting scheme using different wavelets. 

 Wavelet theory had been developed independently on several fronts. Different signal processing 

techniques, developed for signal and image processing applications, had significant contribution in this 

development. Some of the major contributors to this theory are: multiresolution signal processing used in 

computer vision; sub band coding, developed for speech and image compression; and wavelet series 

expansion, developed in applied mathematics.  Using different wavelets, various numerical methods have 

been applied for solving PDEs from beginning of the early 1990s.  In the last two decades this problem has 

attracted great attention and numerous papers about these topics have been published.  Wavelets permit the 
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perfect representation of a variety of functions and operators. Moreover, wavelets establish a connection 

with fast numerical algorithm [5]. Wavelet based numerical methods are used for solving the system of 

equations with faster convergence and lower computational cost.  

 Some of the earlier works on wavelet based methods can be found in [6]. A collection of the discrete 

wavelet transforms (DWT) and the FAS were introduced recently in [7-9]. The wavelet based full 

approximation scheme (WFAS) has exposed to be a very efficient and favorable method for numerous 

problems related to computational science and engineering fields [10]. These methods can be either used as 

an iterative solver or as a preconditioning technique, offering in many cases a better performance than some 

of the most innovative and existing FAS algorithms. Due to the efficiency and potentiality of WFAS, 

researches further have been carried out for its enrichment. In order to realize this task, work build that is 

orthogonal/biorthogonal discrete wavelet transform using lifting scheme [11]. Wavelet based lifting 

technique is introduced by Sweldens [12], which permits some improvements on the properties of existing 

wavelet transforms. The technique has some numerical benefits as a reduced number of operations which 

are fundamental in the context of the iterative solvers. Evidently all attempts to simplify the wavelet 

solutions for PDE are welcome.  In PDE, matrices arising from system are dense with non-smooth diagonal 

and smooth away from the diagonal. This smoothness of the matrix transforms into smallness using wavelet 

transform and it leads to design the effective wavelets based lifting scheme.  

 Lifting scheme is a new approach to construct the so-called second generation wavelets that are not 

necessarily translations and dilations of one function. The latter we refer to as a first generation wavelets or 

classical methods.  The lifting scheme has some additional advantages in comparison with the classical 

wavelets.   This transform works for signals of an arbitrary size with correct treatment of boundaries. 

Another feature of the lifting scheme is that all constructions are derived in the spatial domain. This is in 

contrast to the traditional approach, which relies heavily on the frequency domain. Staying in the spatial 

domain leads to two major advantageous: i) It does not require the machinery of Fourier analysis as a 

prerequisite, this leads to a more intuitively appealing treatment better suited to those in interested in 

applications than mathematical foundations. ii) The algorithms that can easily be generalized to complex 

geometric situations, this leads to second generation wavelets. In addition, the lifting scheme makes a 

computational time optimal and sometimes increasing the speed of calculations.  

 The lifting scheme starts with a set of well-known filters, thereafter lifting steps are used an attempt to 

improve (lift) the properties of a corresponding wavelet decomposition. This procedure has some 

mathematical benefits as a reduced number of operations which are essential in the context of the iterative 

solvers. In addition to this, the present paper illustrates that the application of the lifting technique to the real 

world problems.  

 The present paper is organized as follows: Section 2 deals with Preliminaries of wavelet filter 

coefficients and Lifting scheme. Method of solution is discussed in Section 3. Section 4 provides Numerical 

results of the test problems and finally, in section 5 conclusions of the proposed work are discussed 

 

2. Related Work 

The important feature of the lifting scheme is that every filter bank based on lifting automatically 

satisfies perfect reconstruction properties. The lifting scheme starts with a set of well-known filters; 

thereafter lifting steps are used in attempt to improve the properties of corresponding wavelet 

decomposition.  

Now, we have discussed about different wavelet filters as follows: 

a) Haar wavelet filter coefficients 

We know that low pass filter coefficients  0 1

1 1
, ,

2 2

T

T
a a

 
  
 

and high pass filter coefficients 

 0 1

1 1
, ,

2 2

T

T
b b

 
  
 

play an important role in decomposition. Thus it is natural to wonder that it 

possible to model the decomposition in terms of linear transformations i.e. matrices. Moreover, since digital 

signals and images are composed of discrete data, we need a discrete analog of the decomposition algorithm 

so that we can process signal and image data. 
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b) Daubechies wavelet filter coefficients 

Daubechies introduced scaling functions having the shortest possible support. The scaling function 
N  

has support 0, 1N  , while the corresponding wavelet 
N  has support in the interval  1 / 2, / 2N N .  

We have low pass filter coefficients  0 1 2 3

1 3 3 3 3 3 1 3

4 2 4 2 4 2 4 2
, , , , , ,

T

T
a a a a

    
  
 

 and 

high pass filter coefficients  0 1 2 3

1 3 3 3 3 3 1 3

4 2 4 2 4 2 4 2
, , , , , ,

T

T
b b b b

    
   
 

 

c) Biorthogonal (CDF (2,2)) wavelets 
Let’s consider the (5, 3) biorthogonal spline wavelet filter pair, the low pass filter pair are 

1 0 1

1 1 1
( , , ) , ,

2 2 2 2 2
a a a

 
  
 

 and     
2 1 0 1 2

1 1 3 1 1
( , , , , ) , , , ,

4 2 2 2 2 2 2 2 4 2
a a a a a 

  
  
 

. 

But, we have 1 1( 1) and ( 1)k k

k k k kb a b a    
, 

the highpass filter pair are  

0 1 2

1 1 1
, ,

2 2 2 2 2
b b b


     &  

1 0 1 2 3

1 1 3 1 1
, , , ,

4 2 2 2 2 2 2 2 4 2
b b b b b


    

 

Foundations of lifting scheme: 

Consider to numbers a, b as two neighbouring samples of a sequence and then these have some 

correlation which we would like to take advantage. The simple linear transform which replaces a and b by 

average s and difference d   i.e. 

&
2 2

a b a b
s d

 
 

 
The idea is that if a and b   are highly correlated, the expected absolute value of their difference d will be 

small and can be represented with fever bits. In case that a = b, the difference is simply zero. We have not 

lost any information because we can always recover a and b from the gives s and d as: 

&
2 2

d d
a s b s   

 
Finally, a wavelet transform built through lifting consists of three steps: split. Predict and update as given in 

the Figure 1.  

 
Fig. 1.  Steps in lifting scheme 

Split: Splitting the signal into two disjoint sets of samples.
 Predict: If the signal contains some structure, then we can expect correlation between a sample and its 

nearest neighbors.  i.e. odd P(even)d  
 Update: Given an even entry, we have predicted that the next odd entry has the same value, and stored the 

difference. We then update our even entry to reflect our knowledge of the signal. i.e. even U( )s d 
 The detailed algorithm using different wavelets is given in the next section. The general lifting stages for 

decomposition and reconstruction of a signal are given in Figure 2.  
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Fig. 2. Lifting Wavelet algorithm. 

 

3. Method of solution 

Consider one-dimensional parabolic PDEs (1) or (2), after discretizing this equation through 

the finite difference method (FDM), we get system of algebraic equations. Through this system we 

can write the system as  

                                                                    Au b                                                               (3.1) 

where A  is N N  coefficient matrix, b  is N N  matrix and u  is N N  matrix to be determined.  

where 2JN  , N  is the number of grid points and J  is the level of resolution. 

Solve Eq. (3.1) through the iterative method, we get approximate solution.  Approximate 

solution containing some error, therefore required solution equals to sum of approximate solution 

and error. There are many methods to minimize such error to get the accurate solution. Some of 

them are HWLS, DWLS BWLS etc. Now we are using the advanced technique based on different 

wavelets called as lifting scheme. Recently, lifting schemes are useful in the signal analysis and 

image processing in the area of science and engineering. But currently it extends to approximations 

in the numerical analysis [10]. Here, we are discussing the algorithm [11] of the lifting schemes as 

follows.  

3.1 Haar wavelet Lifting scheme (HWLS) 

In [11], Daubechies and Sweldens have shown that every wavelet filter can be decomposed 

into lifting steps. More details of the advantages as well as other important structural advantages of 

the lifting technique can be available in [12]. The representation of Haar wavelet via lifting form 

presented as;  

Decomposition: 

Consider approximate solution jS P  like as signal, then apply the HWLS decomposition (finer to 

coarser) procedure as, 
 

   

 

 

1

2 2 1

1 1

2 1

1

1

1

,

1
,

2

2 and

1

2

j j

j

d S S

s S d

S s

D d





 



  


 




                                            (3.2) 

In this stage finally, we get new approximation as, 

sj 

sj - 1 

dj - 1 

dj - 1 

sj - 1 

sj 
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1[ ]S S D                                                                                 (3.3) 

Reconstruction: 

Consider Eq. (3.3) and then apply the HWLS reconstruction (coarser to finer) procedure as, 

                                           

 

 

   

 

1

1

1

1 1

2 1

1

2 2 1

2 ,

1
,

2

1
and

2
j

j j

d D

s S

S s d

S d S










 



  

                                            (3.4) 

which is the required solution of the given equation. 

3.2  Daubechies wavelet Lifting scheme (DWLS) 
As discussed in the previous section 3.1, we follow the same procedure but we used different 

wavelet i.e., Daubechies 4th order wavelet coefficient. The DWLS procedure is as follows; 

Decomposition: 

  

 

     

     

 

 

1

2 1 2

1 1 1

2 1

2 1 1

1

2

1

1

3 ,

3 3 2
,

4 4

,

3 1
and

2

3 1

2

j j

j

j

j

s S S

d S s s

s s d

S s

D d








  


  

     
  


  


 




 





                                   (3.5) 

Here, we get new approximation as, 

1[ ]S S D                                                                   (3.6) 

Reconstruction: 

Consider Eq. (3.6), then apply the DWLS reconstruction (coarser to finer) procedure as, 

                                     

 

 

     

     

 

1

2

1

2 1

1 1

1 1

2 1 1

1

2 1 2

2
,

3 1

2
,

3 1

,

3 3 2
and

4 4

3

j j

j j

j

j j

d D

s S

s s d

S d s s

S s S








 

 



 


  


   



  



                               (3.7) 

which is the required solution of the given equation. 

3.3  Biorthogonal wavelet Lifting scheme (BWLS) 

As discussed in the previous sections 3.1 and 3.2, we follow the same procedure here we used another 

wavelet i.e., biorthogonal wavelet (CDF(2,2)). The BWLS procedure is as follows;  

Decomposition:         
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 

     

 

 

1

2 2 1 2 2

1 1 1

2 1 1

1

1

1

1
,

2

1
,

4

1
,

2

2

j j j

j j

d S S S

s S d d

D d

S s

 

 


     


     



 

 

                                     (3.8) 

In this stage finally, we get new signal as, 

1[ ]S S D                                                                   (3.9) 

Reconstruction: 

Consider Eqn. (3.9), then apply the DWLS reconstruction (coarser to finer) procedure as 

                                    

 

 

     

 

1

1

1

1 1 1

2 1 1

1

2 2 1 2 2

1
,

2

2 ,

1

4

1
) ,

2

j j

j j j

s S

d D

S s d d

S d S S

 

 


 






     



      

                                    (3.10) 

which is the required solution of the given equation. 

The coefficients 
 
1

j
s  and 

 
1

j
d  are the average and detailed coefficients respectively of the approximate 

solution au  . The new approaches are tested through some of the numerical problems and the results are 

shown in next section. 

 

4. Numerical examples 

In this section, we applied Lifting scheme for the numerical solution of linear and nonlinear parabolic 

partial differential equations and also demonstrate the competence and applicability of HWLS, DWLS and 

BWLS.  The error is computed by maxma x e au uE   , where eu  and au  are exact and approximate 

solution respectively. 

Test Problem 4.1 We consider the equation (1.1) with    2f u u    

                                                     i.e. 2t xxu u u                                                        (4.1.1) 

subject to the I.C.:     

                     ,0 sinhu x x                                                   (4.1.2) 

and              

B.C.s:    0, 0u t  ,      1, sinh(1) tu t e                                           (4.1.3) 

Which has the exact solution ( , ) sinh( ) tu x t x e  [4].  By applying the methods explained in the section 3, 

we obtain the numerical solutions and compared with exact solution are presented in figure 1. The maximum 

absolute errors with CPU time of the methods are presented in table 1. 
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                            N N   = 64                                                       N N   = 256 

Fig. 1. Comparison of numerical solutions with exact solution of test problem 4.1 for N N =64 & 256. 

 

Table 1. Maximum error and CPU time (in seconds) of the methods of test problem 4.1 
 

N N  Method maxE  Setup time Running time Total time 

 

16 

FDM 4.0195e-03 2.7089 0.0721 2.7840 

HWLS 4.0195e-03 0.0011 0.0020 0.0031 

DWLS 4.0195e-03 0.0009 0.0104 0.0113 

BWLS 4.0195e-03 0.0007 0.0044 0.0051 

 

256 

FDM 1.2802e-03 3.1700 01505 3.3205 

HWLS 1.2802e-03 0.0011 0.0021 0.0032 

DWLS 1.2802e-03 0.0009 0.0100 0.0109 

BWLS 1.2802e-03 0.0008 0.0044 0.0052 

4096 

FDM 3.4759e-04 50.1420 15.9000 66.0420 

HWLS 3.4759e-04 0.0013 0.0026 0.0039 

DWLS 3.4759e-04 0.0010 0.0117 0.0127 

BWLS 3.4759e-04 0.0008 0.0052 0.0060 

 

Test Problem 4.2 We consider the equation (1.2) with  ( , ) sing x t x ,  

                                                     i.e. sint xxu u x                                                    (4.2.1) 

subject to the I.C.:                     

     ,0 cosu x x                                                     (4.2.2) 

and            

  B.C.s:    0, tu t e ,        1, cos(1) sin 1 1t tu t e e                   (4.2.3) 

which has the exact solution  ( , ) cos 1 sint tu x t e x e x    [4].  By applying the methods 

explained in the section 3, we obtain the numerical solutions and compared with exact solution are 

presented in figure 2. The maximum absolute errors with CPU time of the methods are presented in 

table 2. 
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N N   = 64                                                       N N   = 256 

Fig. 2. Comparison of numerical solutions with exact solution of test problem 4.2 for N N =64 & 256. 

 

Table 2. Maximum error and CPU time (in seconds) of the methods of test problem 4.2 
 

N N  Method maxE  Setup time Running time Total time 

 

16 

FDM 3.7828e-03 5.6612 0.0567 5.7179 

HWLS 3.7828e-03 0.0007 0.0013 0.0020 

DWLS 3.7828e-03 0.0006 0.0070 0.0076 

BWLS 3.7828e-03 0.0005 0.0029 0.0034 

 

256 

FDM 1.1534e-03 3.2005 0.1073 3.3078 

HWLS 1.1534e-03 0.0007 0.0013 0.0020 

DWLS 1.1534e-03 0.0006 0.0065 0.0071 

BWLS 1.1534e-03 0.0005 0.0038 0.0043 

4096 

FDM 3.1024e-04 49.4390 20.2830 69.7220 

HWLS 3.1024e-04 0.0011 0.0023 0.0034 

DWLS 3.1024e-04 0.0009 0.0111 0.0120 

BWLS 3.1024e-04 0.0008 0.0050 0.0058 
 

 

Test Problem 4.3 We consider the equation (1) with     6 1f u u u    

                                                     i.e.  6 1t xxu u u u                                               (4.3.1) 

subject to the I.C.:                 1,0 2
1

u x
xe 

 
 




                                               (4.3.2) 

and    B.C.s:     10, 2
51

u t
te

 
 
 
 




,   11, 2
1 51

u t
te

 
 
 
 




         (4.3.3) 

Which has the exact solution   1, 2
51

u x t
x te

 
 
 
 




 [13]. By applying the methods 

explained in the section 3, we obtain the numerical solutions and compared with exact solution are 

presented in figure 3. The maximum absolute errors with CPU time of the methods are presented in 

table 3. 
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N N   = 64                                                             N N   = 256 

Fig. 3. Comparison of numerical solutions with exact solution of test problem 4.3 for N N =64 & 256. 

 

         Table 3. Maximum error and CPU time (in seconds) of the methods of test problem 4.3  
 

 

 

 

 

 

 

 

Test problem 4.4. We consider the equation (1) with    32f u u   

                                                     i.e. 
32t xxu u u                                                     (4.4.1) 

subject to the I.C.: 

     
 

 2

2 1
,0

10

x
u x

x x




 
                                            (4.4.2) 

and             B.C.s:  

   
 

10,
6 10

u t
t




,      
 

11,
2 4

u t
t




                      (4.4.3) 

Which has the exact solution  
 

 2

2 1
,

6 10

x
u x t

x x t




  
 [14].  By applying the 

methods explained in the section 3, we obtain the numerical solutions and compared with exact 

solution are presented in figure 4. The maximum absolute errors with CPU time of the methods are 

presented in table 4. 
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N N  Method maxE  Setup time Running time Total time 

 

16 

FDM 2.1332e-02 2.9144 0.0004 2.9148 

HWLS 2.1332e-02 0.0011 0.0017 0.0028 

DWLS 2.1332e-02 0.0010 0.0128 0.0138 

BWLS 2.1332e-02 0.0009 0.0044 0.0053 

 

256 

FDM 8.7386e-03 3.2582 0.0015 3.2597 

HWLS 8.7386e-03 0.0011 0.0017 0.0028 

DWLS 8.7386e-03 0.0010 0.0109 0.0119 

BWLS 8.7386e-03 0.0005 0.0027 0.0032 

4096 

FDM 2.6256e-03 10.1280 0.0034 10.1314 

HWLS 2.6256e-03 0.0007 0.0012 0.0019 

DWLS 2.6256e-03 0.0006 0.0083 0.0089 

BWLS 2.6256e-03 0.0005 0.0029 0.0034 
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      N N   = 64                                                         N N   = 256 

Fig. 4. Comparison of numerical solutions with exact solution of test problem 4.4 for N N =64 & 256. 

 

Table 4. Maximum error and CPU time (in seconds) of the methods of test problem 4.4  
 

N N  Method maxE  Setup time Running time Total time 

 

16 

FDM 7.7266e-04 3.6717 0.0003 3.6720 

HWLS 7.7266e-04 0.0009 0.0016 0.0025 

DWLS 7.7266e-04 0.0008 0.0105 0.0113 

BWLS 7.7266e-04 0.0007 0.0041 0.0048 

 

256 

FDM 2.7103e-04 5.9599 0.0009 5.9608 

HWLS 2.7103e-04 0.0009 0.0011 0.0020 

DWLS 2.7103e-04 0.0006 0.0082 0.0088 

BWLS 2.7103e-04 0.0005 0.0026 0.0031 

4096 

FDM 7.4160e-05 6.4387 0.0023 6.4410 

HWLS 7.4160e-05 0.0007 0.0011 0.0018 

DWLS 7.4160e-05 0.0005 0.0086 0.0091 

BWLS 7.4160e-05 0.0005 0.0028 0.0033 
 

 

5. Conclusions and future works 

In this work, we applied the wavelet based lifting schemes for the numerical solution of linear and 

nonlinear parabolic partial differential equations. Figures show that the numerical solutions obtained by 

Lifting schemes are agrees with the exact solution. Also in the tables, convergence of the presented schemes 

is observed i.e. the error decreases when the level of resolution N increases and  HWLS & BWLS shows 

significant advantages i.e. CPU time is lesser than FDM  & DWLS. Hence, the presented Lifting schemes in 

particular HWLS & BWLS are very effective for solving linear and non-linear partial differential equations. 
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