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Abstract. Recently, we realize increasing number of researchers that utilizing the modified Riemann-

Liouville fractional differential operator, which is called the Jumarie's fractional differential operator. One of 

the important properties of this operator is the chain rule: 

          .0,1, |)( |)(= )(=)(=  


 xgDyfDxgyfDxgfD xxgyy

'

xgyyx  

This rule plays a substantial role to solve nonlinear fractional differential equations such as the fractional sub-

equation method. In the present paper, we deal with the above chain rule in the sense of the Jumarie's 

differential operator. We shall show the chain rule for the modefied Riemann -Liouville that it is not valid for 

some types of functions. Three cases are illustrated. Also we present new fractional order derivatives of some   

functions in Caputo derivative sense. 

Keywords:  Fractional calculus; fractional differential operator; Riemann-Liouville fractional operators; 

Jumarie's fractional differential operator 

1. Introduction  

 Fractional calculus has been utilized to model physical and engineering processes, which are considered to be 

best characterized by fractional differential equations. It is worth nothing that the regular mathematical models of integer-

order derivatives, consisting nonlinear models, do not work sufficiently in wide cases. Recently, fractional calculus has 

function a very important role in different fields. The concept of the fractional calculus (that is, calculus of derivatives 

and integrals operators of any arbitrary real or complex order) was instilled over three centuries ago. For the first time, 

it was studied by Abel in 1823. He generalized tautochrone problem utilizing fractional calculus techniques. Posterior 

Liouville employed fractional calculus in potential theory. Nowadays the fractional calculus has exhausted the attention 

of many investigators in all areas of sciences (see [1-5]). Anywise, there are various of the fractional order derivatives 

definitions in the literatures such as the Riemann-Liouville [1, 2], Caputo [6], Weyl [1,2], Jumarie [7], Davison and Essex 

[8], and Coimbra [9]. All these fractional derivatives definitions have their advantages and disadvantages. 

  Next some preliminaries and notations regarding the fractional calculus are imposed. 

   Definition 1.1 [1]  The fractional (arbitrary) order derivative of the function f  of order 1<0   is defined by 
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  In the sequel, we use the notation .

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  Remark 1.1 From Definition 1.1 , we have  
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  The Leibniz rule is  
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See[1]. 

Definition 1.2 The Caputo fractional derivative of order 0>  is defined, for a smooth function )(tf  by  
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where 1,][= n  (the notation ][  stands for the largest integer not greater than   ). 

  The Jumarie's definition of fractional differential operator is the modified Riemann-Liouville fractional 

derivative,for a spot continuous function demands not to be differentiable; the fractional derivative of a constant is equal 

to zero and more substantially it strips singularity at the origin for all functions for which =(0)f  constant for example, 

the exponential functions and Mittag-Leffler functions. With the Riemann- Liouville fractional derivative, an arbitrary 

function requires not to be continuous at the origin and it admits not to be differentiable. 

  Recently, Guy Jumarie planned the fractional derivative in the limit form 
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Alternatively, 
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If 0=1,<<0 a  and 0,>  then the definition of Jumarie derivative gives 

 

 .
1)(

1)(
= 
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xxDx  (1) 

 

This modified Riemann-Liouville fractional derivative has the utility for the normal Riemann-Liouville and Caputo 

fractional derivatives: it is proposed for any continuous (nondifferentiable) functions and the fractional derivative of a 

constant is equal to zero. Indeed, if the function is not defined at the origin, the fractional derivative will not exist. One 

of its important property is the chain rule 

 

          .0,1, |)( |)(= )(=)(=  


 xgDyfDxgyfDxgfD xxgyy

'

xgyyx  (2) 

 

In recent work, we shall introduce a counter example to show equation (2) is not true for all functions. A fractional 

sub-equation method is imposed to solve the nonlinear fractional differential equations. Recently, this method is modified 

by using the chain rule (2) of Jumarie's derivative see [12-15]. 

 

2. Chain rule 

Consider two functions 
yyf =)(  and 

xxg =)(  such that 1<<0   and 1<<0   Then (1) implies that 
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On the other hand, we have 
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Since  
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Is a constant. But (3) and (4) are different. They contain the same power of x  but the constant factor is different. 

Finally we proceed to evaluate  xgDyfD xxgyy
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)(=|)( . A computation implies 
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 (5) 

But (5) is different from (3). Therefore, we conclude that  
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3. New Fractional Order Derivatives of Some Functions in Caputo Derivative 
Sense 

In this section we obtain new fractional order derivative for two functions in the sense of Caputo derivative 

Theorem 3.1 The Caputo derivative for the function   xhxf 2sec  is 
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This is true only when .
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Which is true for all x .  

Then  

 

 
 

  dt

inix

txxfD

x

3

0

2

1

1

1














 










 

 After substituting xst   the integral becomes 
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Next, use the standard integral representation of the Gauss hypergeometric 
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Theorem 2. The Caputo derivative for the function     0,sin  
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By substituting  tfz   we get 
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One can derive a recursion formula for  kc . We have 
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4. Conclusions and future works 

We constructed a counter example to show that the chain rule, in the sense of the modified Riemann-

Liouville fractional differential operator, which is called the Jumarie's fractional differential operator, is not 

valid. Also we presented new fractional order derivatives of some functions in Caputo derivative sense 
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