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Abstract. Replicated data with measurement errors frequently exist in various scientific fields. In this work, 
we propose a replicated measurement error model for such data under scale mixtures of normal distributions. 
We consider local influence diagnostics to detect and classify outliers in the data through different perturbation 
schemes. A simulation study and an application confirm the effectiveness and robustness of the diagnostic 
method. 
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1. Introduction  
 Local influence analysis [1] is one of the effective ways to detect and classify outliers. Through various 
perturbation schemes on the established statistical model, it can detect the influential observations and make 
outlier discrimination. The latest research on this area can be seen, for example, in [2-5]. 

In this paper, we focus on outlier detection in replicated data with measurement errors. At first, we need 
to establish an appropriate model to depict the correlation between repeated measurements data as well as to 
characterize the effect of measurement errors on the data. Generally, the model is based on the assumption of 
normal distribution [6,7]. Recently, Cao et al. [8,9] proposed a replicated measurement error model under 
heavy-tailed distribution, which can bring us robust inferences. In this paper, we study local influence analysis 
on the heavy-tailed replicated measurement error model under different perturbation schemes. We aim to 
achieve an effective and robust diagnostic method for outlier detection in replicated measurement data. 

The paper is organized as follows. In Section 2, we give the diagnostic methodology, including a brief 
description of the heavy-tailed replicated measurement error model and the local influence approach. In 
Section 3, we carry out numerical simulation. In Section 4, we display an application on a real data. We give 
a brief conclusion in the last section. 
 

2. Methodology 
2.1  The model 

Let t and t ( 1, ,t n ) represent the true values of the explanatory variable and the response variable 
in the observations respectively. Their corresponding actual repeated measurement data are ( ) , 1, ,i

tx i p  
and ( ) , 1, ,j

ty j q , which satisfy a replicated measurement error model 
( ) ( )
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                                                                           (1) 

Where   and   are measurement errors. Let (1) ( ) (1) ( )( , , , , , )p q T
t t t t tx x y yZ be the actual observations. Unlike 

the traditional normality assumption, here we propose a hierarchical distribution structure for tZ : 
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where m p q  , (0, ,0, ) , ( , )T T T T T
q p q  1 1 1a b , p1 and q1 represent p-dimensional and q-dimensional vector 

of ones respectively, ( )TT T
δ p ε q= , 1 1 , ( )D  denotes the diagonal transformation that transforms a vector to a 

diagonal matrix. The latent variable tv  can adjust the weight of the influence of different samples on the 
parameter estimation, so as to obtain a robust inference effect. Statistical inference of this model can be found 
in [8]. 
 2.2  The local influence approach 

The purpose of local influence is to summarize the behavior of some influence measure ( )T ω  when small 
perturbations take place in the data or model, where 1( , , )g ω  is a g-dimensional perturbation vector. Let 

( , , , , , )T
       θ  be the parameter vector of model (1), ( )c v , ,Z Z ξ  be the complete-data, where 
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nv vv , 1 ˆˆ E[ ( ) | , ]t t tv   θ Z , 1ˆ ˆ ˆˆ ˆˆ / (1 ( ) )T

      b D bφ . Let 
( )cl cθ,ω Z  be the log-likelihood of the perturbed model for the complete-data. We assume that there is an 0ω

such that ( | ) ( | )c c c cl l0θ,ω Z θ Z  for all θ . Let ˆ( )θ ω  be the maximum likelihood estimation of θ  under the 
function ˆ ˆ( ) E{ ( ) | }cQ l cθ,ω | θ θ,ω | Z θ,Z . We define ( ) ( , ( ))T T

Qfα ω ω ω  as the influence graph, where 
ˆ ˆ ˆ ˆ( ) 2{ ( | ) ( ( ) | )}Qf Q Q ω θ θ θ ω θ  is the Q-displacement function which can describe the difference between 
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the behavior of the Q-displacement function, where 
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In this section we consider three different perturbation schemes: case-weight perturbation, response 
variable perturbation and variance ratio perturbation. The key step is to calculate the elements of the matrix 

0ωΔ . 
i) Case-weight perturbation 

We consider an arbitrary attribution of weights for the expected complete-data log-likelihood function 

called perturbed Q-function, which is presented by , ,
1
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 ii) Response variable perturbation  
This perturbation scheme, which can diagnose observations with great influence on their prediction, is 

represented by replacing ( )j
ty  with ( ) ( )j j

t t ty y   , with 0 (0, ,0)Tω meaning non-perturbed model. In this 
scheme, the matrix
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 iii) Variance ratio perturbation 
This perturbation is introduced by writing ,t t  ω . In this case, the matrix 

0ωΔ , the non-perturbed 

case can be acquired when 0 (1, ,1)Tω . The matrix
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3. Simulation study 
We conduct numerical studies to evaluate the performance of several diagnostic methods. The proposed 

local influence will be compared with the method based on adjusted Pearson residuals. To generate data of 
model (1), we consider two types of distribution: normal distribution (N) and student-t distribution (T). The 
true values of the parameters are set as follows: 2  , 3  , 1  , 1  , 0.5  , 1  . The number of 
repeated measurements is 3p  , 2q  . Here, we choose the response variable perturbation as an example. In 
order to add an outlier, we shift the value of the 12-th sample 12x to *

12 12x x   . The parameter =2  
represents the degree of perturbation. We will calculate type I error and type II error to compare the efficiency 
of the two diagnostic methods. The hypothesis test can be expressed as 

H1: The 12-th sample is a normal one   H2: The 12-th sample is an outlier.                (3) 
Here, type I error means the probability of the 12th sample is the normal one but is classified as the outlier, 
and type II error is the probability of the 12-th sample is the outlier but is classified as the normal one. 

Firstly, the data is generated from model (1) under the normal distribution. We do 1000N   replications 
with sample size 30n  . Table 1 reports the results of type I and II errors based on the sampling data using the 
two diagnostic methods. For local influence, type I and type II errors are both ideally small ( _ inf 0.0030locI  , 

_ inf 0locII  ); while for the adjusted Pearson residual analysis, type I error is very high ( 0.8470resI  ) to keep the 
type II error as 0. The results indicate that local influence is more effective than the residual based method 
when the data comes from normal distribution. 

 
Table 1: The test results of two diagnostic methods under the normal distribution 

Model Local influence Adjusted Pearson residual 
Type I error Type II error Type I error Type II error 

N 0.0030 0 0.8470 0 
Secondly, we generate data from model (1) under the t distribution. All the designed values of this 

scenario are the same as before. The test results are listed in Table 2. Since statistical inference based on heavy-
tailed model will be more robust than the normal model, the influence of the outliers on the diagnostic result 
is reasonably slight. This is the reason why the type II error under local influence is larger than it under residual 
method. However, the type I error under local influence is still smaller than it under residual method. Overall, 
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the local influence analysis based on the heavy-tailed distribution is more effective and more robust than the 
normal one. 

 
 
 

Table 2: The test results of two diagnostic methods under the t distribution 

Model Local influence Adjusted Pearson residual 
Type I error Type II error Type I error Type II error 

t 0 1 0.8900 0 
  

 

4. Application 
In this section, we consider the CSFII data[10] as an illustrative example. The data contains the 24-h recall 

measures and three additional 24-h recall phone interviews of 1,722 women’s diet habits. We consider the 
calorie intake/5,000 as  , and the saturated fat intake/100 as  . Instead of   and  , the nutrition variables x  
and y  are recorded by four 24-h recalls, which are assumed to follow model (1) with 4p q  . We consider 
four distributions for comparison, which include the normal distribution (N), the t  distribution (T), the slash 
distribution (SL) and the contaminated normal distribution (CN). 

4.1. Local influence 
According to the spectral analysis, we have 

0 1
2 g T

k k kk



 ωQ e e , where 1 1( , ), , ( , )g g e e are the 

eigenvalues-eigenvectors with eigenvalues 1 h   , 1 0h g      and orthogonal eigenvectors 1, , ge e . 

Let 1/ ( )k k h      , 2 2 2
1( , , )k k kge ee , 2

1
(0) h

k kk
M 


 e . Let (0)M  and (0)SM  denote, respectively, the 

mean and standard deviation of { (0) , 1, , }lM l g . Observations with value of (0)lM  significantly greater than 
*(0) (0)M c SM  ( * 4c  ) are considered as potential outliers[11]. 

i) Case-weight perturbation 
The local influence intensity of each observations under this perturbation are plotted in Figure 1. The 

numbers of outliers under different distributions are listed in Table 3. 
The values of baselines are calculated based on the variance of the intensity. It is not difficult to find that 

the intensities of outliers under the normal distribution is much higher than those under the heavy-tailed 
distributions. For example, the intensity of the strongest influential 1421 under the normal distribution is 
greater than 0.04, while the intensity of the strongest influential 1569 under T and SL is less than 0.018. From 
this viewpoint, the diagnoses under the heavy-tailed distributions are much slightly affected by the outliers 
than those under the normal distribution. 

 
Fig. 1: Local influence under case-weight perturbation 

Table 3: Outlier information under case-weight perturbation 
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Model The number of outliers 
N 167,273,403,554,694,756,814,818,1252,1408,1417,1421,1608,1708 
T 43,48,91,230,290,470,692,785,985,1044,1178,1535,1542,1569,1650 

SL 43,91,230,470,485,509,628,785,857,904,982,1044,1178,1395,1535,1543,1569 
CN 167,273,407,554,694,756,818,1178,1252,1421,1408,1417,1608 

ii) Response variable perturbation 

Figure 2 shows the influence intensity under different distributions. Under the normal distribution, the 
intensity of the strongest influential 1252 is about 0.005. But the strongest influential under T and SL are 370 
and 982 respectively, with intensity about 0.0025. The strongest influential 1178 under CN is about 0.003. 
Furthermore, the number of potential outliers are listed in Table 4. We find that both the number and the 
intensity of the influential observations are clearly reduced when we use heavy-tailed distributions. This results 
coincide with the conclusion drawn from case-weight perturbation. 

 
Fig. 2: Local influence under response variable perturbation 

Table 4: Outlier information under response variable perturbation 
Model The number of outliers 

N 39,91,144,221,229,254,333,436,556,756,814,939,1230,1252,1421,1530,1569 
T 370 

SL 785,982,1178,1535,1542 
CN 43,470,509,785,982,1178,1535,1698 

iii) Variances ratio perturbation  

Figure 3 and Table 5 give respectively, the intensity of the influential and the information of the outliers 
under this perturbation. The diagnostic results under N and CN are similar. However, they are obviously 
different from the other two heavy-tailed distributions. For example, under the normal distribution, the 
intensity of the strongest influential 1421 is about 0.07, while under t distribution the strongest influential 1090 
is only 0.005, and the strongest influential 75 under the slash distribution is less than 0.004. These results help 
us have a more objective understanding of the outliers and avoid the misdiagnosis caused by misclassification 
of the distribution. 
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 Fig. 3: Local influence under variances ratio perturbation 

Table 5: Outlier information under variances ratio perturbation 
Model The number of outliers 

N 167,407,756,818,925,1090,1408,1417,1421,1505,1562,1608,1708 
T 167,274,505,575,684,910,925,934,997,1058,1071,1090,1218,1300,1421,1483,1562 

SL 75,569,575,684,910,997,1071,1090,1300,1483,1562 
CN 167,407,818,1090,1408,1417,1421,1562,1608,1708 

4.2. Global influence 
Through the local influences above, we treat the following eight cases as the most potential outliers: 1421, 

1569, 1252, 370, 982, 1178, 1090 and 75. In order to reveal the impact of these eight observations on the 
parameter estimation, we remove them to obtain the maximum likelihood estimation 0θ̂ . Lu and Song[12] 
suggest that the following two quantities can measure the difference between the original maximum likelihood 
estimation and 0θ̂  
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where pn  is the number of parameters. The scale parameters in different distributions cannot be compared 
directly, so we calculate TRC and MRC only for the location parameters and list the results in Table 6. We can 
discover that the greatest changes take place under the normal distribution. The TRC and MRC are the smallest 
under T. The diagnostic similarity between SL and T shows that the heavy-tailed distribution not only has a 
good robustness to outliers, but also can overcome misspecification of distribution to some extent. 
 

Table 6: TRC and MRC of global influence under the four distributions 
Model TRC MRC 

N 0.1732 0.1611 
T 0.0476 0.0436 

SL 0.0518 0.0479 
CN 0.0729 0.0673 

 

5. Conclusion  

The detection and classification of outliers play important roles in data mining. In this work, we construct 
diagnostics of local influences based on a proposed replicated measurement error model. Numerical analysis 
confirms the effect of diagnostic methods under the heavy-tailed distributions. By comparing the results of 
different heavy-tailed distributions, we can obtain a more objective understanding of the data. The method 
proposed in this work can be extended to a wider range of use. 
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