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Abstract. Replicated data with measurement errors frequently exist in various scientific fields. In this work,
we propose a replicated measurement error model for such data under scale mixtures of normal distributions.
We consider local influence diagnostics to detect and classify outliers in the data through different perturbation
schemes. A simulation study and an application confirm the effectiveness and robustness of the diagnostic
method.
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1. Introduction

Local influence analysis [1] is one of the effective ways to detect and classify outliers. Through various
perturbation schemes on the established statistical model, it can detect the influential observations and make
outlier discrimination. The latest research on this area can be seen, for example, in [2-5].

In this paper, we focus on outlier detection in replicated data with measurement errors. At first, we need
to establish an appropriate model to depict the correlation between repeated measurements data as well as to
characterize the effect of measurement errors on the data. Generally, the model is based on the assumption of
normal distribution [6,7]. Recently, Cao et al. [8,9] proposed a replicated measurement error model under
heavy-tailed distribution, which can bring us robust inferences. In this paper, we study local influence analysis
on the heavy-tailed replicated measurement error model under different perturbation schemes. We aim to
achieve an effective and robust diagnostic method for outlier detection in replicated measurement data.

The paper is organized as follows. In Section 2, we give the diagnostic methodology, including a brief
description of the heavy-tailed replicated measurement error model and the local influence approach. In
Section 3, we carry out numerical simulation. In Section 4, we display an application on a real data. We give
a brief conclusion in the last section.

2. Methodology

2.1 The model

Let & and 7, (7 =1,...,n) represent the true values of the explanatory variable and the response variable
in the observations respectively. Their corresponding actual repeated measurement data are x”,i=1,---,p
and y', j=1,---,¢q, which satisfy a replicated measurement error model

t

xf’) =¢ +5,“), i=1...,p,

v =n+e, j=1...q, 6]
n=a+ps, t=1,...n,
Where § and & are measurement errors. Let Z, = (x,...,x"”, v ..., 1”)" be the actual observations. Unlike

the traditional normality assumption, here we propose a hierarchical distribution structure for Z, :

* Corresponding author. E-mail address: caochunzheng@163.com.

Published by World Academic Press, World Academic Union



Journal of Information and Computing Science, Vol. 13(2018) No. 1, pp 074-080 75

Z, | ,,Ut N (a+b¢ ,K‘(V )D(9)), @)
¢ |u N(/I K(v,)9:) v, ~H(v v),t=1,.

where m=p+gq, a=(0,...,0,a1))",b=(1,,51;)" ,1, and 1 _represent p-dlmensmnal and g-dimensional vector

of ones respectively, ¢=(¢,1;,9,1;)", D() denotes the diagonal transformation that transforms a vector to a

diagonal matrix. The latent variable v can adjust the weight of the influence of different samples on the

parameter estimation, so as to obtain a robust inference effect. Statistical inference of this model can be found
in [8].
2.2 The local influence approach

The purpose of local influence is to summarize the behavior of some influence measure 7T(®w) when small

perturbations take place in the data or model, where w=(@,,:-,®,) is a g-dimensional perturbation vector. Let

0=(1,a.B.0;,9,.¢.)" be the parameter vector of model (1), Z, =(Z,&,v) be the complete-data, where
z=(Z!,...z2)) , &=(,...&) , v=0....m) ., £=E'(0)0,Z], t=¢./1+4b' D' (@)b) . Let

such that 7 (8,0, |Z,)=1(0|Z,) for all 0. Let 6(w) be the maximum likelihood estimation of @ under the
function Q6,w|0)=E{l (B,w|Z.)|6,Z} . We define a(w)=(o’, fp(@)" as the influence graph, where
fo(©) =2{0(0]0)—-0(B(w) | 8)} is the O-displacement function which can describe the difference between
0(») and 0 . The curvature C foa = —2dTQmUd of a(w) in the direction of the unit vector d at o, can investigate
the behavior of the Q-displacement function, where -Q, =A} {-Q,(0)}'A, . A, s the value of

A, =60(8,0|0)/ 6860 without disturbance. The Hessian matrix Q,(8) = *0(6 | 0)/ 9000 has elements given
by (the elements not shown are all 0. The following is the same)

=——Z,,QM,;— LS @@ -2, 0, ==Lk, 0,--L3ké,

5tl 5t1 Ltl e t=1
AN 4
ag, =T [ 7 ] - S T T b
Q 3 wg;KZ(y —a- :Bé:) Q/}ﬁ o, 1:1K QST
1 & -
o =22 i I+ :0 e L ,—A) +1],
D, %;rcf:;(y —a-pE) ¢qﬂ 0,, = z(p %;K(f )+
. —L_ B .. _ q 1 )
Q%‘/’J - s; ;( ti 5) 3 PPy 2(052 §0€,1 Z(y(/ a— ﬂf)] (/)3 CIﬁ .

In this sectlon we consider three dlfferent perturbation schemes: case-weight perturbation, response
variable perturbation and variance ratio perturbation. The key step is to calculate the elements of the matrix
A

i) Case-weight perturbation
We consider an arbitrary attribution of weights for the expected complete-data log-likelihood function

called perturbed Q-function, which is presented by 0(8,®|0) = ia),E[lw ®|Z,,)] 0,Z,], where
t=1

0=(®,...,»,)" is an nxlvector with ®, =(1,...,1)" . The matrix A, has elements given by

°0(016) 9) ’0(016) 9) _
Dae oo™ 5;[ & (& -1, dad, o, = g;[’(z(y” a-pEN,

3001, ) K
pow o, = g;[KegZ(y,j a—PEN] . qﬂ
20016 113

|w:m - [/2'[ (é{ - A’)z + ,[2] H]
d9.00, " 20, 20T
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3’0(010)
|m:u) =< [K (x(l) é:) 5
a(pﬁaa)f ‘ (As ; ; IZ] 2 2
0’00 0) q 0 rqﬂ
— :—_ + .
50,50, o 2 2%2 1 Z<y —a-pEY]

ii) Response variable perturbation
This perturbation scheme, which can diagnose observations with great influence on their prediction, is

represented by replacing y’ with 'V = + @, , with @, = (0,---,0)" meaning non-perturbed model. In this
scheme, the matrix A, is given by
0019, _a3, T000) g3z I0010)
aaaw’ ‘w:wo - o, ;Kz s 8ﬁ8a), |r.o:uso - 0,5 (Kz r) s 8(056(0, Lu u)g 3 ;( Z(yzj a— ﬂé))
iii) Variance ratio perturbation
This perturbation is introduced by writing ¢, , = ¢, . In this case, the matrix A, , the non-perturbed

case can be acquired when @, =(1,...,1)" . The matrix A, is given by

0010 13y Z(y,, —a-pé),

Oadw, Q.o

P00 Ueas gy, E
6,38&), ‘u):too_ 0, ;[Krgtzl(yy‘ a ﬂgt)]-"_go qﬂ9

2’0(010) g 13
_— = —o— —_ z-
20,00, o=y 0 o ,:1( _ (y,, BEY) 2qp’ .

3. Simulation study

We conduct numerical studies to evaluate the performance of several diagnostic methods. The proposed
local influence will be compared with the method based on adjusted Pearson residuals. To generate data of
model (1), we consider two types of distribution: normal distribution (N) and student-¢ distribution (T). The
true values of the parameters are set as follows: 1=2, a=3, f=1, ¢,=1, ¢, =0.5, ¢. =1. The number of
repeated measurements is p =3, ¢ =2 . Here, we choose the response variable perturbation as an example. In
order to add an outlier, we shift the value of the 12-th sample x,,to x,, =x, +@u . The parameter =2
represents the degree of perturbation. We will calculate type I error and type Il error to compare the efficiency
of the two diagnostic methods. The hypothesis test can be expressed as

H;: The 12-th sample is a normal one <> H,: The 12-th sample is an outlier. 3)
Here, type I error means the probability of the 12th sample is the normal one but is classified as the outlier,
and type II error is the probability of the 12-th sample is the outlier but is classified as the normal one.

Firstly, the data is generated from model (1) under the normal distribution. We do N =1000 replications
with sample size n=230. Table 1 reports the results of type I and II errors based on the sampling data using the

two diagnostic methods. For local influence, type Iand type Il errors are both ideally small (7, ;, =0.0030,
Iy e =0.8470) to keep the

type Il error as 0. The results indicate that local influence is more effective than the residual based method
when the data comes from normal distribution.

=0); while for the adjusted Pearson residual analysis, type I error is very high (/

res

Table 1: The test results of two diagnostic methods under the normal distribution

Model Local influence Adjusted Pearson residual
Type I error Type II error Type I error Type II error
N 0.0030 0 0.8470 0

Secondly, we generate data from model (1) under the ¢ distribution. All the designed values of this
scenario are the same as before. The test results are listed in Table 2. Since statistical inference based on heavy-
tailed model will be more robust than the normal model, the influence of the outliers on the diagnostic result
is reasonably slight. This is the reason why the type II error under local influence is larger than it under residual
method. However, the type I error under local influence is still smaller than it under residual method. Overall,
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the local influence analysis based on the heavy-tailed distribution is more effective and more robust than the
normal one.

Table 2: The test results of two diagnostic methods under the t distribution

Model Local influence Adjusted Pearson residual
Type I error Type I error Type I error Type II error
t 0 1 0.8900 0

4. Application

In this section, we consider the CSFII datal'”l as an illustrative example. The data contains the 24-h recall
measures and three additional 24-h recall phone interviews of 1,722 women’s diet habits. We consider the
calorie intake/5,000 as &, and the saturated fat intake/100 as . Instead of & and 7, the nutrition variables x

and y are recorded by four 24-h recalls, which are assumed to follow model (1) with p =g =4. We consider

four distributions for comparison, which include the normal distribution (N), the ¢ distribution (T), the slash
distribution (SL) and the contaminated normal distribution (CN).

4.1. Local influence
According to the spectral analysis, we have _Zan =" hee , where (4,e),....,(4,.e,) are the

eigenvalues-eigenvectors with eigenvalues 4, >...> 4,, 4,,, =...=4, =0 and orthogonal eigenvectors e,,...,e, .

Let 4 =4, /(A +...42,), € =(€,enel), M(0)=D" Zel. Let M(0) and SM(0) denote, respectively, the
mean and standard deviation of {M(0),,/=1,---,g} . Observations with value of A7(0), significantly greater than
M(0)+c"SM(0) (¢ =4) are considered as potential outlierst!!],

i) Case-weight perturbation

The local influence intensity of each observations under this perturbation are plotted in Figure 1. The
numbers of outliers under different distributions are listed in Table 3.

The values of baselines are calculated based on the variance of the intensity. It is not difficult to find that
the intensities of outliers under the normal distribution is much higher than those under the heavy-tailed
distributions. For example, the intensity of the strongest influential 1421 under the normal distribution is
greater than 0.04, while the intensity of the strongest influential 1569 under T and SL is less than 0.018. From
this viewpoint, the diagnoses under the heavy-tailed distributions are much slightly affected by the outliers
than those under the normal distribution.
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Fig. 1: Local influence under case-weight perturbation
Table 3: Outlier information under case-weight perturbation
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Model The number of outliers
N 167,273,403,554,694,756,814,818,1252,1408,1417,1421,1608,1708
T 43,48,91,230,290,470,692,785,985,1044,1178,1535,1542,1569,1650
SL 43,91,230,470,485,509,628,785,857,904,982,1044,1178,1395,1535,1543,1569
CN 167,273,407,554,694,756,818,1178,1252,1421,1408,1417,1608

ii) Response variable perturbation

Figure 2 shows the influence intensity under different distributions. Under the normal distribution, the
intensity of the strongest influential 1252 is about 0.005. But the strongest influential under T and SL are 370
and 982 respectively, with intensity about 0.0025. The strongest influential 1178 under CN is about 0.003.
Furthermore, the number of potential outliers are listed in Table 4. We find that both the number and the
intensity of the influential observations are clearly reduced when we use heavy-tailed distributions. This results
coincide with the conclusion drawn from case-weight perturbation.

X10 (N X10° T
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Fig. 2: Local influence under response variable perturbation
Table 4: Outlier information under response variable perturbation

Model The number of outliers
N 39,91,144,221,229,254,333,436,556,756,814,939,1230,1252,1421,1530,1569
T 370
SL 785,982,1178,1535,1542
CN 43,470,509,785,982,1178,1535,1698

iii) Variances ratio perturbation

Figure 3 and Table 5 give respectively, the intensity of the influential and the information of the outliers
under this perturbation. The diagnostic results under N and CN are similar. However, they are obviously
different from the other two heavy-tailed distributions. For example, under the normal distribution, the
intensity of the strongest influential 1421 is about 0.07, while under ¢ distribution the strongest influential 1090
is only 0.005, and the strongest influential 75 under the slash distribution is less than 0.004. These results help
us have a more objective understanding of the outliers and avoid the misdiagnosis caused by misclassification
of the distribution.
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Fig. 3: Local influence under variances ratio perturbation
Table 5: Outlier information under variances ratio perturbation

Model The number of outliers
N 167,407,756,818,925,1090,1408,1417,1421,1505,1562,1608,1708
T 167,274,505,575,684,910,925,934,997,1058,1071,1090,1218,1300,1421,1483,1562
SL 75,569,575,684,910,997,1071,1090,1300,1483,1562
CN 167,407,818,1090,1408,1417,1421,1562,1608,1708

4.2. Global influence

Through the local influences above, we treat the following eight cases as the most potential outliers: 1421,
1569, 1252, 370, 982, 1178, 1090 and 75. In order to reveal the impact of these eight observations on the
parameter estimation, we remove them to obtain the maximum likelihood estimation 8°. Lu and Song!'?
suggest that the following two quantities can measure the difference between the original maximum likelihood
estimation and °

TRC =" (6,-67)/0, |, MRC = max [(0,-0))/0, 1,

where n, is the number of parameters. The scale parameters in different distributions cannot be compared

directly, so we calculate TRC and MRC only for the location parameters and list the results in Table 6. We can
discover that the greatest changes take place under the normal distribution. The TRC and MRC are the smallest
under T. The diagnostic similarity between SL and T shows that the heavy-tailed distribution not only has a
good robustness to outliers, but also can overcome misspecification of distribution to some extent.

Table 6: TRC and MRC of global influence under the four distributions

Model TRC MRC
N 0.1732 0.1611

T 0.0476 0.0436
SL 0.0518 0.0479
CN 0.0729 0.0673

5. Conclusion

The detection and classification of outliers play important roles in data mining. In this work, we construct
diagnostics of local influences based on a proposed replicated measurement error model. Numerical analysis
confirms the effect of diagnostic methods under the heavy-tailed distributions. By comparing the results of
different heavy-tailed distributions, we can obtain a more objective understanding of the data. The method
proposed in this work can be extended to a wider range of use.
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