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Abstract。 Accurate segmentation for brain magnetic resonance (MR) images is of great significance to 

quantitative analysis of brain image. However, traditional segmentation methods suffer from the problems existing 

in brain images such as noise, weak edges and intensity inhomogeneity (also named as bias field). Convolutional 

neural networks based methods have been used to segment images; however, it is still hard to find accurate results 

for brain MR images. In order to obtain accurate segmentation results, a multi-scale fully convolution networks 

model (MSFCN) is proposed in this paper. First, we use padding convolutions in conv-layer to preserve the 

resolution of feature maps. So we can obtain segmentation results with the same resolution as inputs. Then, different 

sized filters are utilized in the same conv-layer, after that, the outputs of these filters are concatenated together and 

fed to the next layer, which makes the model learn features from different scales. Both experimental results and 

statistic results show that the proposed model can obtain more accurate results. 

 Keywords: Convolutional neural networks; Fully convolutional networks; magnetic 

resonance image; multi-scale. 

1. Introduction 

Brain disease is one of the main diseases that threaten human health, so it is of important sense to use 

brain imaging to help us diagnose the brain disease [1-3]. Compared with other medical images, brain MR 

images are easier to be used for diagnosis of brain disease for their high contrast among different soft tissues 

and high spatial resolution [4]. Segmenting brain tissues accurately, including white matter (WM), gray 

matter (GM) and cerebrospinal fluid (CSF), plays an important role in both clinical practice and medical 

study. However, some imaging artifacts such as noise, intensity inhomogeneity and weak edges, which 

drives scholars to find and propose more robust and more accurate approaches, hinder most segmentation 

methods. 

Quite a lot of clustering algorithms have been proposed for brain MR image segmentation. Fuzzy C-

means (FCM) algorithm, first introduced by Dunn [5], is one of the most widely used ones. FCM assumes 

that a pixel of an image belongs to different classes at different degree, corresponding to brain MR images’ 

fuzziness. The FCM fails to segment images with noise, low contrast and bias field by only using intensity 

information. In order to improve the robustness of FCM, many scholars proposed modified models based on 

FCM by adding spatial information into it and obtained a certain improvement [6, 7]. However, they failed to 

solve the problem of low contrast. 

In the last several years, deep learning (DL) [8], especially convolutional neural networks (CNN), has 

outperformed the state of the art in computer vision tasks. Since the breakthrough by Krizhevsky et al. [9], 

even larger and deeper networks have been trained [10, 11]. 

The traditional use of CNN is on classification tasks, where the output we want is just a class label for 

the input image. However, in image segmentation tasks, the desired output should be an image with each 

pixel labeled. Hence, Ciresan et al. [12] trained a network (DNN) to predict a class label of a pixel by 

labeling a patch in a square window centered on the pixel itself. They succeeded to apply CNN to image 

segmentation and won the EM segmentation challenge at ISBR 2012. Nevertheless, there are some 

shortcomings in this model. First, it requires a great lot of calculation and room, for example, if we want to 

segment an image with a size of 512 × 512, we have to classify 262144 patches with the network. Secondly, 

there is a lot of redundancy because of the overlapping patches of adjacent pixels. Thirdly, there is a tension 

between local information and global information. Small patches guarantee the localization accuracy but use 

little context, while large patches may reduce the localization accuracy. These cause the network inefficient. 

Long et al. [19] first trained an end-to-end learning network for semantic segmentation called fully 

convolutional networks (FCN), which outputs dense prediction from arbitrary-sized inputs. Moreover, both 
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training and predicting are performed whole-image-at-a-time. In-network convolutional layers extract 

features and upsampling layers enable pixelwise prediction. Compared with patch-wise training networks 

[12], the FCN model is more uncomplicated and works more efficient with no pre- or post-processing. 

However, there are millions of parameters to be trained in the FCN model, which requires a large 

amount of training data and a lot of training time, but it is unrealistic in biomedical tasks. Hence, 

Ronneberger et al. [20] modified and extended the FCN model such that it works with few training images 

and obtains more precise results, and this model is called U-Net for its U-shaped architecture. U-Net 

upsamples at stride 2 and combines shallow layers with upsampled outputs, thus it learns better and the 

segmentation results are more realistic with sharper edges. But U-Net underperforms when it comes to 

segmenting details, such as CSF in brain MR images. 

Based on the analysis above, we can find gray value based methods are sensitive to outliers. Although 

some modified models reduce the influence of noise and outliers to some extent, most improvements are at 

the price of increasing parameters and complexity of the model. FCN and U-Net are efficient and find better 

results, while details and narrow bands in images are lost. To address these drawbacks, we propose a multi-

scale FCN model (MSFCN) in this paper. Different-scaled filters are added into the model to obtain more 

accurate results, where large-scaled filters see more context and small-scaled ones keep details and narrow 

bands. We have compared proposed model with other state-of-the-art segmentation models to show that our 

model can obtain more precise results.  

2.  Backgrounds 

2.1 Deep convolutional networks (DNN) in segmentation 
Considering the excellent performance of deep learning in classification task, many scholars try to take 

advantage of it for image segmentation. Patchwise training was used in many approaches, in which each 

pixel is labeled with the class of its enclosing region. For example, Ciresan et al. [12-18] succeeded to apply 

CNN to segmentation task, but the poor efficiency made it impossible for their model to be used in clinical 

medicine. 

By contrast, FCN [19] is more efficient. Long et al. reinterpreted classification networks as fully 

convolutional and add upsampling layers, which decreased parameters and complexity a lot and enabled 

pixelwise prediction. However, there are some drawbacks in the FCN model. First, the FCN model takes 

some typical CNN models such as AlexNet, VGGNet, etc as its contracting part, which requires a large 

amount of training data. Secondly, the model has to be trained three times (FCN-32s, FCN-16s, FCN-8s). 

Thirdly, the result of FCN is too smooth and the details are lost. 

Based on FCN, Ronneberger et al. [20] built a more elegant architecture called U-Net. This network 

uses successive convolutional layers followed by a maxpooling layer in contracting part, and in expansive 

part, the process is inverted. Further, feature maps with the same resolution from both parts are concatenated 

together followed by successive convolutional layers and two 1 × 1 filters are used in the final to obtain the 

segmentation results. But due to the unpadded convolution, the resolution of results is lower than that of 

inputs. Moreover, so many times of convolutions make the details lost in high layers, leading to erroneous 

results at these pixels. 

3. Proposed Model 

We replace some 3 × 3 kernels with 1 × 1 and 5 × 5 ones based on U-Net without changing the depth 

of the network, which enable the network to extract features from different scales at the same time. In the 

following, an overview of our model is given. 

 

3.1 Motivation 
Szegedy et al. [10] trained GoogLeNet model in 2014 and won the classification task of Imagenet Large 

Scale Visual Recognition Challenge 2014(ILSVRC2014). They proposed an inception module, where 1 × 1, 

3 × 3, 5 × 5 filters and max-pooling are used at the same time. This work improved their final accuracy and 

reduced the number of parameters quite a lot. 

Considering the improvement by the inception module, we proposed MSFCN model for segmenting 

brain MR images. Different from classification task, a class label should be assigned to each pixel in 

segmentation task, which means not only the global information and large regions matter, but small regions, 

details and the pixel itself are also essential. Thus, we increase the proportions of 1 × 1 and 3 × 3 filters and 
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reduce that of 5 × 5 ones. Traditional methods underperform when segmenting details and narrow bands, 

while our strategy to utilize multi-scale filters is more flexible. 

 

3.2 Model structure 
Our model is made up of two parts, the contracting part and the expansive part. Each part consists of 

several blocks (see Fig. 1 (b) and (c)), and our network model structure is illustrated in Fig. 1 (a) (we show 

our model with blocks just to illustrate it clearly). It concatenates outputs from different scaled filters, and 

concatenates maps from shallow layers and high layers as well. In contracting part, every “max-pooling” 

halves the width of maps and the following “convolution” doubles the number of feature channels, while it is 

inverted in expansive part. We use padded convolutions to find segmentation results with same resolution as 

inputs. At the final layer, we use four 1 × 1 convolution filters to map the outputs, making the network 

segment brain MR images into four classes (WM, GM, CSF and background). The detailed parameters of 

our model is reported in Table 1. The expansive part is same as U-Net so we don’t list it here. 
 

 
(a) 

 
                (b)               (c) 

Fig. 1 Illustration of MSFCN model (a) MSFCN architecture and a description of some icons. The number of 

feature maps in each block is different, but the structures are the same (b) Block 1 architecture. (c) Block 2 architecture 
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3.3 Model training 
We fed the network with 2000 brain MR images and corresponding segmentation results to train it. In 

the training process, we used the Adam [21] optimizer, batch size 5 and learning rate 𝜆 = 0.0001, and the 

network was trained for 30 epochs. For a given image sized by 256 × 256, the network outputs a probability 

matrix sized by 256 × 256 × 4. The probability is calculated by the softmax which is defined as 

𝑝𝑐(𝐼𝑖𝑗) = 𝑒𝑂𝑐(𝐼𝑖𝑗) ∑ 𝑒𝑂
𝑐′(𝐼𝑖𝑗)𝐶

𝑐′⁄                                                             (1) 

where 𝑝𝑐(𝐼𝑖𝑗) is the probability that the pixel 𝐼𝑖𝑗 belongs to class 𝑐, and 𝑂𝑐(𝐼𝑖) is the activation in feature 

channel 𝑐 at position (𝑖, 𝑗) in the last layer (the value at (𝑖, 𝑗, 𝑐) in the probability matrix). In addition, the 

cross entropy loss function was used in the network as the energy function and is shown as follow: 

𝐸 = ∑ ∑ 𝑝𝑐
, (𝐼𝑖𝑗) log (𝑝𝑐(𝐼𝑖𝑗))

−1
𝐶
𝑐=1𝐼𝑖𝑗∈𝐼                                              (2) 

where 𝑝𝑐
, (𝐼𝑖𝑗) is the true distribution. That means the loss function is computed by adding up pixelwise 

softmax over the whole final map with the cross entropy. 

Our network is based on Keras and trained on a NVIDIA GeForce GTX 1050Ti GPU (4GB). 

 
Table 1：The architecture and parameters of MSFCN 

Part Layer Input Kernel Size OutSize 

Contracting 

Part 

  1*1 256*256*32 

Conv1 Brain MRI 3*3 256*256*32 

  5*5 256*256*10 

Concat1 Conv1 - 256*256*74 

Pool1 Concat1 2*2 128*128*74 

  1*1 128*128*64 

Conv2 Pool1 3*3 128*128*64 

  5*5 128*128*20 

Concat2 Conv2 - 128*128*148 

Pool2 Concat2 2*2 64*64*148 

  1*1 64*64*128 

Conv3 Pool2 3*3 64*64*128 

  5*5 64*64*40 

Concat3 Conv3 - 64*64*296 

Pool3 Concat3 2*2 32*32*296 

  1*1 32*32*256 

Conv4 Pool3 3*3 32*32*256 

  5*5 32*32*80 

Pool4 Conv4 2*2 16*16*592 

Conv5 Pool4 3*3 16*16*512 

Expansive 

Part 

Conv5 Conv5 3*3 16*16*512 

…    

4. Experiment Results 

In this section, we experimentally evaluate our proposed model in a set of clinical brain MR images, 

which is generated from Internet Brain Segmentation Repository (IBSR). We also evaluate U-Net for 

comparison. The U-Net and our model are both trained with 2000 images and corresponding ground truth for 

30 epochs, and tested on 200 images. Furthermore, the two models are both trained for ten times to show the 

robustness. 

First, we compare the result of our model with that of other methods in order to show that our model 

performs better in segmenting details and narrow bands. Fig. 4(a) shows the original clinical brain image and 

Fig. 4(b) is the standard segmentation result of it. Fig. 4(c) is the segmentation result of U-Net and Fig. 4(d) 

is ours. Fig. 4(e-h) show the details of Fig. 4(a-d). It can be seen from the results that our model segment the 

details and narrow bands better than U-Net and our model is more flexible. 
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Fig. 2 (a) clinical brain MR image (b) ground truth (c) U-Net (d) proposed model (e-h) details in red boxes of (a-d) 

 

 Then, in order to quantitatively analyze the effects of various segmentation models, we use Jaccard 

similarity (Js values)[22] as a metric to evaluate their performance, which is define as a ratio between the 

intersection and union of two sets 𝑆1 and 𝑆2: 

𝐽𝑠(𝑆1, 𝑆2) =  (𝑆1 ∩ 𝑆2) (𝑆1 ∪ 𝑆2)⁄                                                       (3) 

where 𝑆1 is the segmentation result and 𝑆2 is the ground truth. A more accurate segmentation result 

should have a higher Js value. We applied above methods on 200 clinical brain MR images from IBSR to 

show the robustness and accuracy of our proposed model. The Js values on CSF, GM and WM are listed in 

Table 2 with means computed over 200 results predicted by ten trained models. From Table 1 we can find 

that our proposed model has higher means of Js values on all brain tissues, which indicates that our model 

has more accurate segmentation results.  

 
Table 2 ：Mean Js values of segmentation results on CSF, GM, WM (%) 

 CSF GM WM 

U-Net[20] 31.79 84.25 83.04 

MSFCN 39.05 86.60 85.80 

 

In Table 3, we list some other criterions for comparison, including Acc, Var, training time and 

running time, where Acc (accuracy) is a value computed by (𝑆1 ∩ 𝑆2) 𝑆2⁄  over the whole map and Var is the 

variance of Js values. From Table 2, we can find that our model has lower variance which proves that our 

model is more robust.  

 
Table 3 ：Comparison of accuracy (%) and variances (𝟏𝟎−𝟒) of Js values 

 Acc Var(Acc) Var(CSF) Var(GM) Var(WM) 

U-Net[20] 89.02 4.42 91.02 11.18 23.30 

MSFCN 90.74 2.50 92.98 6.71 16.47 

 

We also compare training time and running time in Table 4. Although our model takes longer time in 

training and running, it’s acceptable for clinical applications.  
 

Table 4：Training time and running time of U-Net and MSFCN 

 Training time(s/epoch) Running time(s/img) 

U-Net 127.73 0.0226 

MSFCN 229.15 0.0382 
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6.  Conclusion 

In this paper, we have proposed a multi-scale FCN model for brain MRI segmentation based on U-Net. 

In order to obtain more accurate results, we use different sized filters in a layer to get more features. We have 

shown that this model yields more accurate segmentation results and that it performs well in details, weak 

edges and narrow bands. In addition, we can conclude, from the experimental results, that this model has 

higher robustness. 
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