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Abstract. The immunization strategy towards the epidemic spreading problem has attracted widespread attention 

of scientists from many different fields. However, the traditional immune behavior is achieved by deleting the edges 

in the network, which can lead to variations in the network structure and furthermore, seriously damage the efficien-

cy of the network. In this paper, we studied a new type of immune strategy applied to weighted networks–

immunization therapy strategy, which is to maintain the necessary network efficiency by lowering the weight of 

edges to suppress the spread of epidemic. It is similar to the inflammation around the infected parts of our body, 

which can either prevent epidemic from further spreading or do no harm to the function of the body. Thus, we name 

this novel strategy as "immunization therapy strategy". We first let the rate of transmission be proportional to the 

edge weight according to the 𝑆 − 𝐼 epidemic spreading model. In addition, we give specific dynamic evolution for 

infected nodes that boosts efficient epidemic control. Theoretical analysis and simulation outputs indicate that the 

immunization therapy strategy can efficaciously prevent the spread of the epidemic, while maintaining the high effi-

ciency of the network. 

Keywords: complex network; 𝑆 − 𝐼 model; epidemic controlling; immunization therapy. 

1. Introduction  

As the theories of complex networks developed [1], researchers have been paying more and more atten-

tion to epidemic spreading in complex networks. In the real world, usually there are only a few infection 

sources at the very beginning. However, without effective control and management, the epidemic spread will 

boom in a large-scale society. The immunization strategies in previous studies concentrated on selecting 

nodes according to their statues among the whole network, for instance, in terms of their nodes degrees. 

There are mainly 3 immunization that have been studied most up to now: random immunization[2]-[3],target 

immunization[4] and the distance-based local immunization[5].  

Random immunization means the nodes are randomly chosen during the implement period. Without 

considering whether the node degrees are heavy or tiny, we choose all the nodes with the same probability. 

Target immunization takes the heterogeneity characteristic of the network into consideration and pick out 

nodes with larger degree for immunization. All of the edges connected to certain nodes will be eliminated 

from the network if these nodes are immunized. Eliminating such edges will change the structure of the 

whole network, which means some spreading paths of the epidemic will disappear. However, it is necessary 

to acquire the global information of the network in implementation of target immunization. To put things 

into a further step, the local immunization does not require us to get the global information. It just makes use 

of the nearby local information of infected nodes while controlling epidemic spread. Local immunization 

achieves the goal of controlling epidemic spreading in large-scale society by isolating infected nodes as well 

as nodes within a certain distance d of them.  

The main idea of traditional immunization is eliminating the interconnections of some chosen nodes and 

the rest parts of the network. All the connections that link a node to others will be cut off immediately as 

long as it is immunized. Thought the epidemic spreading can be controlled by this way, the problem is the 

network is always destructed [6]- [7]. When the proportion of immunized nodes heat a certain point, the 

whole network will become invalid. As a result, the traditional immunization methods are not proper for 

comprehensive implement.  

Actually, the epidemic spreading chances can be reduced by receiving prophylactic vaccination in the 

real stage. In weighted networks, the weight of each edge is defined as the tightness among nodes, and dif-

ferent degrees of tightness have different influence on epidemic spreading rate. Thus, we can control epidem-

ic outbreak not by absolutely eliminating some edges but by just reducing the weights (degrees of tightness) 

of some edges, just like what we do in the real world. This method can either provide us with the same epi-
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demic-control effect as tradition immunizations do or maintain the connectivity and the desirable efficiency 

of the whole network.  

Having recognized the drawbacks of traditional immunizations [8]-[9], in this essay, we propose a con-

cise immunization strategy with high efficiency on the perspective of weighted network – immunization 

therapy strategy. We achieve it by decreasing the weights of certain edges, i.e. reducing the weights of those 

edges that are connected with specific nodes. We derive the term "therapy" from a kind of physiological 

phenomenon: In order to prevent epidemic from spreading, whenever certain tissues are infected, there will 

be self-repair and inflammatory activities nearby these tissues. In such condition, self-repair therapy takes 

effect without absolutely destroy body functions. In the respect of epidemic-controlling efficiency and main-

taining of the efficiency of the whole network, we make some contrasts between our new immunization ther-

apy strategy and traditional immunization strategies. Both simulation and theoretical analysis tell us that im-

munization therapy strategy can either effectively control epidemic diffusion or keep the network efficiency 

high. What is more, we introduce mechanism of self-repair therapy into the target immunization, i.e. de-

crease weights of the edges connected to nodes with high degrees. In this paper, an accurate mathematical 

model is constructed and some applicable knowledge is deduced. The immunization, whose usefulness has 

been proved by experiments, is significant in guiding immune behaviors in the real stage. 

2. Methods 

2.1. Our definition of immunization therapy 
In complex networks, the common immunization [10]-[11] way cuts the spreading path of epidemic by 

deleting nodes, such as deleting the edges around given nodes. The result is identical to the errors and attacks 

rules in the reality. Concretely, only less than half of the efficiency of the original network will be achieved 

while 15% of the maximum nodes are attacked. Moreover, when this proportion comes to 30%, the overall 

network will be collapsed and may finally be desperate to turn out to be unconnected pieces. As a result, in 

the real world, the conventional immunization methods are not possible to be carried out. Thus, we attempt 

to lower the edges weight associated with the immunized nodes, but we do not lower the weight down to 0 to 

prevent from damaging the entire network. This implementation will assure the appropriate immune effects 

while maintaining the essential information transmission, and meanwhile, the overall network can preserve 

the normal operation in a certain range.  

To make things more simple, we make an assumption when we apply the immunization method in 

complex network: The edges connected to immunized nodes will be reduced by 𝑞 times, where 𝑞>1. If 𝑞 

tends toward infinity, our immunization therapy strategy equals to traditional strategies. If 𝑞 equals to 1, the 

immunize effect will become extremely weak, which means we let the epidemic spread without any immun-

ize intervene. We consider the weights of classical binary 𝐵𝐴 network [12]-[13] as the tightness between 

nodes and add weighted mechanism to it, in which various degrees of tightness have different impacts on 

epidemic spreading efficiency. Especially, we use 𝑤
𝑘𝑘′

= 𝑤0(𝑘𝑘′)𝛽 to describe the proportional relation 

between epidemic spreading speed and edge weights, where 𝑤
𝑘𝑘′

 is weight of the edge connecting a node 

with degree 𝑘 and another node with degree 𝑘′. 𝑤0 is invariant and different types of network have different 

𝛽. Then, the strength of 𝑘 degree node can be calculated according to the edge weight:  

 𝑁𝑘 = 𝑘Σ
𝑘′

𝑃𝑟𝑜(𝑘′/𝑘)𝑤
𝑘𝑘′

     (1) 

Here, we only take non-associative network whose degree correlation probability can be described as 

𝑃𝑟𝑜(𝑘′/𝑘) = 𝑘′𝑃𝑟𝑜(𝑘′)/⟨𝑘⟩ into consideration. From what has been analyzed above, we can draw a 

function:  

 𝑁𝑘 = 𝑤0⟨𝑘1+𝛽⟩𝑘1+𝛽/⟨𝑘⟩  (2) 

 

2.2. Our epidemic spreading model 
We implement the well-known Susceptible-Infected (𝑆 − 𝐼) model to conduct our research about the 

dynamic spreading behavior of epidemic in the weighted networks. In this model, the node has two statuses 

only: susceptible state (𝑆) and infected state (𝐼), where infected nodes cannot be recovered. During the be-
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ginning burst phase of the spreading, because of the lack of deep understanding to the epidemic which also 

has the characteristics of sudden outbreak, we often have no proper control measures timely, resulting in the 

rapid spreading of the epidemic and the great destruction to the society. That is why we simulate the spread-

ing of epidemic with 𝑆 − 𝐼 model. Then we just transform the 𝑆 − 𝐼 model a bit and extend the original mod-

el to the Susceptible-Infected-Susceptible (𝑆𝐼𝑆) model or Susceptible-Infected-Recovered (𝑆𝐼𝑅) model[14]-

[15]. Therefore, the 𝑆 − 𝐼 model is adequate for our research in weighted networks. In our study, we set the 

aggregate transmission rate among nodes by degree 𝑘 as 𝜂𝑘. Thus, the rate of transmission between degree 𝑘 

node and degree 𝑘′ node is:  

 𝜂
𝑘𝑘′

= 𝜂𝑘
𝑤

𝑘𝑘′

𝑁𝑘
  (3) 

where 𝑤
𝑘𝑘′

 means the weight of the edge, 𝑁𝑘 means node strength, and 𝜂 is a constant.  

We can figure out that from Eq.(3), the greater the edge weight, the higher the epidemic spreading rate 

𝜂
𝑘𝑘′

, which is consistent with the fact. When we take 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 network[16]-[17] into consideration, the 

frequency of knowledge flow can be depicted by the edge weights; in the U.S. airport network (𝑈𝑆𝐴𝑁)  the 

traffic frequency can be described by the edge weights as well. Greater the weight, higher the passenger flow. 

In the non-associated networks, Eq.(3) can be shown as the following form: 𝜂
𝑘𝑘′

= 𝜂𝑘′
𝛽

⟨𝑘⟩/⟨𝑘1+𝛽⟩.  

In addition, we are able to obtain a susceptible node's infection probability at time 𝑡 with degree 𝑘 is 

1 − Π
∀𝑘′𝜖Ψ(𝑡)

(1 − 𝜂
𝑘𝑘′

), in which Ψ(𝑡) means the degree sequence of infected neighbors adjoining to a 𝑘-

degree susceptible node. In order to study the spreading characteristics effectively, we firstly get the evolu-

tion equation from the 𝑆 − 𝐼 model by means of the mean field theory in weighted networks:  

 𝜕𝑖𝑘(𝑡)/𝜕𝑡 = 𝑘(1 − 𝑖𝑘(𝑡))Σ
𝑘′

𝑃(𝑘′/𝑘)𝑖
𝑘′

(𝑡)𝜂
𝑘𝑘′

     

Where the right item is positively related to the degree 𝑘, and 1 − 𝑖𝑘(𝑡) indicates the probability of a 𝑘 

degree susceptible node. As for the last item Σ
𝑘′

𝑃(𝑘′/𝑘)𝑖
𝑘′

(𝑡)𝜂
𝑘𝑘′

, the summation indicates the average 

probability that an infected neighbor infects a susceptible node at time 𝑡 with degree 𝑘. The rate of transmis-

sion from degree 𝑘′ node to degree 𝑘 node is represented by 𝜂
𝑘𝑘′

, which is the main distinction between 

the novel one and the common 𝑆 − 𝐼 model.  

Then, we replace the Eq.(3) by Eq.(4) with 𝑃𝑟𝑜(𝑘′/𝑘) = 𝑘′𝑃𝑟𝑜(𝑘′)/⟨𝑘⟩ and overlook the terms 

with higher order. Then we are able to obtain the following equation:  

 

𝜕𝑖𝑘(𝑡)/𝜕𝑡 =
𝜆𝑘1+𝛽⟨𝑘⟩

⟨𝑘1+𝛽⟩
∑

𝑘′𝑃𝑟𝑜(𝑘′)

⟨𝑘⟩
𝑘′

𝑖
𝑘′

(𝑡) 

                                  =
𝜆𝑘1+𝛽⟨𝑘⟩

⟨𝑘1+𝛽⟩
𝜃𝑘(𝑡) 

(5) 

 

We can see in the equation that no terms are associated with degree 𝑘, which means 𝜃𝑘(𝑡) is independ-

ent of 𝑘 in the non-associative network. Consequently, we have:  

   𝜃𝑘(𝑡) = 𝜃(𝑡) = ∑
𝑘′𝑃𝑟𝑜(𝑘′)

⟨𝑘⟩𝑘′
𝑖
𝑘′

(𝑡) (6) 

 

We deduce the partial deviation guidance for the formula above with respect to variable 𝑥 and we get 

following functions:  

 

𝜕𝜃(𝑡)/𝜕𝑡 = ∑
𝑘′𝑃𝑟𝑜(𝑘′)

⟨𝑘⟩
𝑘′

𝜕𝑖
𝑘′

(𝑡)

𝜕𝑡
 

                                 = ∑
𝑘′𝑃𝑟𝑜(𝑘′)

⟨𝑘⟩𝑘′
𝜂𝑘1+𝛽⟨𝑘⟩

⟨𝑘1+𝛽⟩
𝜃(𝑡) 

                                 =
𝜂⟨𝑘2+𝛽⟩

⟨𝑘1+𝛽⟩
𝜃(𝑡) 

        (7) 
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Consolidating Eq.(5) to Eq.(7) under the uniform initiate condition 𝑖𝑘(𝑡 = 0) = 𝑖0, we have:  

 𝑖𝑘(𝑡) = 𝑖0 + 𝑖0

𝜂𝑘1+𝛽⟨𝑘⟩

⟨𝑘1+𝛽⟩
[𝑒𝑡/𝜏 − 1] (8) 

 

𝑖(𝑡), which means the average density of infected nodes, can be calculated by the following equation:  

 𝑖(𝑡) = ∑ 𝑃

𝑘

𝑟𝑜(𝑘)𝑖𝑘(𝑡) = 𝑖0 + 𝑖0

𝜂⟨𝑘1+𝛽⟩⟨𝑘⟩

⟨𝑘1+𝛽⟩
[𝑒𝑡/𝜏 − 1] (9) 

There are  

 𝜏 =
⟨𝑘1+𝛽⟩

𝜂⟨𝑘2+𝛽⟩
  (10) 

Eq.(10) tells us that when epidemic outbreaks, the growth of time scale has a close relationship with the 

network’s heterogeneity, i.e. if some nodes have unequal degrees, they will have different impact on the epi-

demic spreading. As 𝑁 (the network’s node number) tends to infinity, 𝜏 convergent to a constant. According 

to the construction of transmission rate, we can see that 𝛽 have a big influence on the epidemic spreading 

speed on the complex network. Fig 1 displays how steady-state infected nodes density changes with different 

𝛽. It is easy to find out that a larger 𝛽 means a lower epidemic spreading speed. We can find out from the 

Fig.1 that if 𝛽 is 1, the value of 𝜏(time scale) fit perfectly with the theoretical value. Fig.2 makes comparison 

of the early-stage infected nodes density and the theoretical values. The 𝛽 values of the three lines from top 

to bottom is 1, 1.5 and 2. If 𝛽 is 0, the network becomes the classic unweighted 𝐵𝐴 model [18]-[19]. Conse-

quently, it is necessary for us to concentrate on the important nodes and protect them with more cautiousness. 

 

 
Fig. 1: With different 𝛽, the infected nodes proportion varies, which can be defined as a func-

tion of time: i(t). The inner graph makes contrasts of different 𝝉 when ββ is 1.The results are 

drawn from 50 independent experiments. 
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Fig. 2: Fig.2 shows the contradistinction between theoretical value and 𝝉 under different β, in 

which the dash line means the theoretical value and we put the results into semi-log coordinate. 

The results are drawn from 50 independent experiments. 

 

 

2.3. Network Efficiency Analysis 
Network efficiency is applied to depict the diffusion and transportation capability in the dynamic net-

work. High efficiency indicates close interaction between nodes, and information or goods can diffuse quick-

ly in the network. The definition of network efficiency in unweighted network is contrary to the summation 

of the shortest path lengths between two nodes:  

 𝐸 =
1

𝑁(𝑁−1)
∑

1

𝑑
𝑖𝑖′

𝑖≠𝑖′
  (11) 

where di,i' is the shortest path length connecting node i and node i'. It is easy to find out that in the net-

work, E = 1.  

In the weighted network, the epidemic-spreading ability from one node to another is proportional to the 

edges weights and the shortest path length between them. The following equation describes the length of the 

shortest path in a weighted network:  

 𝑑
𝑖𝑖′
𝑤 = 𝑚𝑖𝑛 ∑

1

𝑤𝑚𝑛
𝑚,𝑛∈𝑃

𝑖,𝑖′
  (12) 

where Pi,i' is a path connecting nodes i and i'. In this way, the efficiency of the weighted network E can 

be defined as:  

 𝐸 =
1

𝑁(𝑁−1)
∑

1

𝑑
𝑖𝑖′
𝑤𝑖≠𝑖′

  (13) 

If all of the edge weights are decreased by q times, the original edge-deleted network efficiency will de-

crease by 1/q times, while the network efficiency shown in Eq.(13) is obviously greater than 1/q. Conse-

quently, network in Eq.(13) can be more efficient than the original one.  

Then, to represent the immunization effect before and after change, we set the related network efficien-

cy 𝜀 as:  

𝜀 = 𝐸 𝐸0⁄         (14) 
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In this equation, E0 is the pre-immunization efficiency while E is the after-immunization efficiency. It 

can be found out from Eq.(14) that 𝜀 represents both the efficiency and the changes of network. We will ap-

ply 𝜀 to weighted network in the following statement. 

3. Results 

Previous studies have shown that large degree nodes have the most important impact on the spread of 

epidemic in scale-free networks. As a traditional immune strategy, target immunization is regarded as the 

most efficient method due to its ability to immunize the minimum proportion of nodes to achieve the desired 

results. Nevertheless, it will greatly lower the network efficiency as well. In order to ensure the effective op-

eration of the whole network, we will bring in the immunization therapy strategy as we have defined before, 

and have a look on the target immunization therapy.  

The immunization therapy looks for the way to repress the epidemic by lowering the weight of edge. In 

our model, the weight of edge is computed by 𝑤𝑘𝑘′ = 𝑤0(𝑘𝑘′)𝛽. Thus, after reducing 𝑞𝛽 times, 𝑤𝑘𝑘′ will be  

         𝑤𝑘𝑘′
′ = 𝑤𝑘𝑘′ 𝑞𝛽⁄ = 𝑤0(𝑘𝑘′ 𝑞⁄ )𝛽     (15) 

Here, the transmission rate 𝜂𝑘𝑘′
′  is  

𝜂𝑘𝑘′
′ = 𝜂(𝑘′ 𝑞⁄ )𝛽 〈𝑘〉 〈𝑘1+𝛽〉⁄ = 𝜂𝑘𝑘′ 𝑞𝛽⁄      (16) 

We can draw a conclusion from Eq.(15) and Eq.(16) that if edge weight is reduced by 𝑞𝛽 times, the 

transmission rate 𝜂𝑘𝑘′
′  will also be reduced by 𝑞𝛽 times. This is because the destination node degree is re-

duced by 𝑞𝛽 times. In our model, 𝑘′ 𝑞⁄  is defined as a key factor. In order to get the average nodes density of 

all k-degree nodes after immunization, the 𝑘 in the Eq.(8) is replaced by a key factor 𝑘 𝑞⁄  and then the fol-

lowing equation can be deduced.  

                          𝑖𝑘
′ (𝑡) = 𝑖0 + 𝑖0

𝜂〈(𝑘 𝑞⁄ )1+𝛽〉〈𝑘〉

〈𝑘1+𝛽〉
[𝐸𝑡 𝜏⁄ − 1]     (17) 

When all the nodes with degrees bigger than 𝑘𝑡 are immunized, i(𝑡) becomes  

                          𝑖𝑘
′ (𝑡) = ∑ 𝑝(𝑘)𝑘≥𝑘𝑡

𝑖𝑘
′ (𝑡) + ∑ 𝑝(𝑘)𝑘<𝑘𝑡

𝑖𝑘(𝑡) 

                                           = 𝑖0 + 𝑖0
〈𝑘〉

〈𝑘2+𝛽〉
(𝐸𝑡 𝜏⁄ − 1) 

                                     ∙ [∑ 𝑝(𝑘)(𝑘 𝑞⁄ )1+𝛽
𝑘≥𝑘𝑡

+ ∑ 𝑝(𝑘)𝑘1+𝛽
𝑘<𝑘𝑡

] 

    (18) 

Eq.(18) tell us that if the topological parameters in a network are fixed to certain values, which means 𝛽 

can be generally fixed, the infected nodes density can only be influenced by the value of 𝑘𝑡 and 𝑞 after im-

munization therapy. If we take the extreme condition into consideration, where 𝑞 tends toward infinity and 

𝑘𝑡 = min {𝑘}, the epidemic cannot diffuse and 𝑖′(𝑡) = 𝑖0;When merely 𝑞 tends toward infinity, the immuniza-

tion therapy becomes the traditional one. When 𝑘𝑡 ≥ max {𝑘} or 𝑞 = 1, immunization does not work and 

𝑖′(𝑡) = 𝑖(𝑡).  

We use function 𝑝(𝑘) = 2𝑚2𝑘3 to describe the degree distribution in a weighted BA network, in which 

m means the number of edges connected to the original network when we add a new point to it. If we apply 

𝑝(𝑘) to Eq.(16) and make k a continuous one, we can get:  

                                  𝑖′(𝑡) = 𝑖0 + 𝑖0

〈𝑘〉

〈𝑘2+𝛽〉
(𝑒𝑡 𝜏⁄ − 1) 

                                            ∙ [∑ 2𝑚2𝑘3(𝑘 𝑞⁄ )1+𝛽 + ∑ 2𝑚2𝑘3𝑘1+𝛽
𝑘<𝑘𝑡𝑘>𝑘𝑡

] 

                                           = 𝑖0 + 𝑖0

〈𝑘〉

〈𝑘2+𝛽〉
(𝑒𝑡 𝜏⁄ − 1) ∙ 2𝑚2 

                                              ∙ (∫ 𝑘𝛽−2 𝑞𝛽+1⁄
𝑚𝑎𝑥{𝑘}

𝑘𝑡

+ ∫ 𝑘𝛽−2
𝑘𝑡

𝑚𝑖𝑛{𝑘}

) 

                                            = 𝑖0 + 𝑖0

〈𝑘〉

〈𝑘2+𝛽〉
(𝑒𝑡 𝜏⁄ − 1)

2𝑚2

𝛽 − 1
 

                                              ∙ (
𝑘𝛽−1

𝑞𝛽+1
|𝑘𝑡

𝑚𝑎𝑥{𝑘}
+ 𝑘𝛽−1|𝑚𝑖𝑛{𝑘}

𝑘𝑡 ) 

     (19) 
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We should treat the optimization of Eq.(14) along with Eq.(19) as a combined optimization issue to 

reach immunization goal, and enlarge the whole network efficiency as much as possible at the same time. 

Since the number of unknowns equals to the number of equations, the best results of 𝑘𝑡 and 𝑞 can be always 

found in order to get the expected results. Moreover, we can find from Eq.(18) that the density of infected 

node is decided by the degree distribution 𝑝(𝑘) of a particular network as well. Therefore, the network topol-

ogy will also influence the epidemic spreading and the resulting immunization strategy.  

The immunized nodes density 𝑖(𝑡) changing with time 𝑡 are depicted in Fig.3 with different 𝛽 and q. It 

can be observed that the greater 𝛽 and q, the better the result of the inflammation immunization. Fig.4 de-

picts the variations of transmission velocity with time t and different  𝛽 and q, where the velocity of trans-

mission[20]-[21] can be defined as follow:  

                                               𝑉𝑖𝑛𝑓(𝑡) =
𝑑𝑖(𝑡)

𝑑𝑡
≈

𝐼(𝑡) − 𝐼(𝑡 − 1)

𝑁(𝑡)
      (20) 

where i(t) = 𝐼(𝑡) 𝑁(𝑡)⁄ , N(t) is the amount of nodes with time t.  

From Figure 4 we can find that the epidemic spreading velocity can be reduced by decreasing 𝛽 and q. 

Actually, we can observe from Eq.(16) that as the value of q grows larger, the immunization effect becomes 

better. And meanwhile, the value of 𝛽 is inversely proportional to i(t). Therefore, we need to work harder to 

repress the epidemic spreading efficiently in the network with small 𝛽. 

 

 
 Fig. 3: Fig.3 shows how steady-state infected nodes proportion i(t) changes with time t. Dif-

ferent lines show the results under different 𝛽β and q. These results are drawn from 50 inde-

pendent experiments. 
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Fig. 4: Fig.4 shows how velocity Vinf  (t) changes with time t. Different lines show the results 

under different 𝛽 and q. These results are drawn from 50 independent experiments. 

 

We fix β to 1, which means there’s no inflammation effect, and make a contrast of immunization thera-

py. With various q, we use immunized nodes proportion to illustrate how steady-state infected nodes density 

i(t)(Fig.5) and efficiency of the network 𝜀 (Fig.6) changes. We can figure out from Fig.5 that if the immun-

ized nodes proportion near 0.25, the epidemic spreading can be absolutely offset by traditional target immun-

ization; If q equals 10, which is relevant larger, the target immunization therapy is similar to the traditional 

target immunization; If q ranges between 5 and 10, steady-state infected nodes density i(t) change mildly 

with tiny differences between them. Consequently, the target immunization therapy is preferred when q 

ranges from 5 to 10. Fig.6 tells us that if q equals 10,the network is much more efficient after the target im-

munization therapy compared with the traditional strategy immunization; If q ranges from 5 to 10,the effi-

ciency change mildly. When the proportion of immunized nodes is 0.25, if q equals 10,the network after tar-

get immunization therapy is 7-8 times more efficient than the traditional one and if q equals to 5,the network 

after target immunization therapy is approximately 20 times more efficient than the traditional one! From 

what has been mentioned above, we can find out that the target immunization therapy can either control epi-

demic spreading or protect the efficiency of the network. 

 
 Fig. 5: 𝛽 is fixed to 1.With various q,  we use immunized node proportion to illustrate how 

steady-state infected nodes density i(t) changes. We draw our result from the average solutions 

of 50 independent experiments. 
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4. Results 

The theorem of common immunization strategy is to cut off the links between nodes and other networks. 

The connections of the immunized node with other nodes will be deleted out of the network. Although it cuts 

down the spreading paths, it destroys the network. In our study, in weighted network, a simple but effective 

immunization strategy – immunization therapy strategy is studied in view of the shortcomings of the tradi-

tional immunization method to reduce the network efficiency greatly. By decreasing the edge weights, it per-

forms immunization therapy, like reducing a specific portion of weight of all edges linked to a particular 

node. This new immunization mechanism is studied by comparing the immunization performances with 

common immunization strategy and retaining the network efficiency. Theoretical analysis and simulation 

results reveal that the immunization strategy can efficiently suppress the epidemic spreading while maintain-

ing a high-efficiency network.  

 

 
Fig. 6:  𝛽 is fixed to 1.With various q, we use immunized nodes proportion to illustrate how 

network efficiency  𝜺 changes. We draw our result from the average solutions of 50 independ-

ent experiments. 

What is more, by introducing therapy mechanism into target immunization, i.e. decrease weights of the 

edges connected to nodes with high degree, and by constructing an accurate mathematical model, we deduce 

some applicable knowledge. The usefulness of the immunization therapy strategy has been proved by exper-

iments and it is significant in guiding some real-world immunization performances. Besides, except for nor-

mal network structure, our model is also fit for some specific network structures like community structure. 
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