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Abstract. Contemporary biological technologies like gene expression microarrays produce extremely high-

dimensional datasets with limited samples. Analysis of gene expression data is essential in microarray gene expression 

studies in order to retrieve the required information. Gene expression data generally contain a large number of genes 

but a small number of samples. The complicated relations among the different genes make analysis more difficult, 

and removing irrelevant genes improves the quality of results. In this regard, a new feature selection algorithm called 

2-level MRMS is presented based on rough set theory. It selects a set of genes from microarray data by maximizing 

the relevance and significance of the selected genes. The paper also presents a novel discretization method, Gaussian 

Fuzzy Discretization based on fuzzy logic to discretize the continuous gene expression values. The performance of 

the proposed algorithm, along with a comparison with other related feature selection methods, is studied using the 

classification accuracy of k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) on four microarray data 

sets. The experimental results show that the genes selected using 2-level MRMS feature selection give high 

classification accuracy than other methods.  

Keywords: classification, feature selection, fuzzy discretization, high- dimensional data, maximum relevance and 

maximum significance, microarray data 

1. Introduction 

A microarray dataset [1] is a repository containing microarray gene expression data. The raw microarray 

data are images that are transformed into gene expression data matrices where rows represent genes, columns 

represent various samples such as tissues or experimental conditions and the numbers in each cell characterize 

the expression level of a particular gene in a particular sample. Figure 1 shows an example of an M × N gene 

expression dataset where M is the number of genes, and N is the number of samples. 

 

Fig. 1: Example of gene expression data 

 

Data dimensionality reduction is one of the important machine learning tasks while dealing high-

dimensional data with enormity on size, missing values and noise [2]. Gene expression dataset contains 

thousands of gene expression values, many of which may be irrelevant or redundant for classification [3]. 

Leaving out relevant attributes or keeping irrelevant attributes may affect the performance of the classification 

algorithm. Therefore statistical methods are required to identify a reduced search space are commonly used 

for classification [4]. There are many feature selection approaches to assist in classification of samples [5-9]. 

They are classified into four categories, namely filter approach, wrapper approach, embedded approach, and 

hybrid approach. A filter approach applies a statistical measure to assign a score to each feature without using 
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a learning algorithm [10]. A wrapper approach uses learning techniques to evaluate the accuracy produced by 

the use of the selected features in the classification [11]. An embedded approach combines the feature selection 

step and classifier construction. A hybrid approach is a combination of both filter and wrapper-based methods 

[12]. In this paper, Rough Set Theory (RST) based feature selection method is used.  

The rough set theory has been applied successfully to feature selection of discrete valued data [13,14,15]. 

It reduces the number of features of a dataset without considering any prior knowledge and using only the 

information contained within the dataset [16]. In this paper, 2-level MRMS feature selection method is 

proposed to select a set of genes from gene expression datasets by considering both relevance and significance 

of the selected genes. To compute the relevance and significance, the equivalence partitions of each gene is 

used. This can be automatically derived from the given datasets. So, RST needs no information other than the 

data set itself.    

The RST feature selection process can only operate effectively with datasets containing discrete values. 

As gene expression datasets contain continuous value attributes, it is necessary to perform a discretization 

technique before gene selection. This paper presents a new discretization method, Gaussian Fuzzy 

Discretization (GFD) to discretize the continuous gene expression values. The discretization of numerical 

attributes can be performed before or after normalization [l7]. In this paer, the datasets are normalized using 

fuzzy logic. Then the normalized dataset can be discretized using mean and standard deviation. 

The GF-discretized datasets are given as input to the feature selection methods. The rest of the paper is 

organized as follows. Section 2 discusses the related work in brief. Section 3 introduces the basic concepts of 

rough sets. The GFD process and the proposed feature selection method is explained in Section 4 for selecting 

relevant and significant genes. 

2. Related Work 

Hu et al. [18] proposed a feature subset selection technique based on a fuzzy-rough model. They used a 

symmetric function to compute fuzzy similarity relations between the objects with a numerical attribute and 

transform the similarity relation into a fuzzy equivalence one. So, this approach does not require discretizing 

the numerical data. Also they defined four attribute significance measures. Based on the measures, they 

constructed a forward hybrid attribute selection algorithm. Jenson and Shen [19] examined a novel approach 

based on fuzzy-rough sets, called fuzzy-rough feature selection. It overcomes the problems of noisy and real-

valued data, as well as handling mixtures of nominal and continuous value attributes. FRFS achieves this by 

the use of fuzzy-rough sets, and a new measure of attribute significance, the fuzzy-rough degree of dependency. 

It also deals with real-valued decision attributes.  

Yao and Zhao [20] discussed attribute reduction in decision-theoretic rough set models regarding different 

classification properties, such as: decision monotocity, confidence, coverage, generality and cost. Cornelis et 

al. [21] introduced a framework for fuzzy-rough set based feature selection. They provided a comprehensive 

typology of subset evaluation measures that can be used to define fuzzy decision reducts. Zhang et al. [22] 

studied the attribute reduction based on a discernibility matrix and used it to design correspondence attribute 

reduction algorithm. A simplified decision table was first introduced and then, a new measure of the 

significance of an attribute was defined for reducing the search space of the simplified decision table. Zahra 

and Reza [23] proposed a new fuzzy 2-level complementary system for classification of gene expression data. 

This approach exploits complementary learning and hierarchical organization, and complexity reduction and 

good interpretability are achieved. 

3. Rough Sets 

Let 𝐼 = (𝑈, 𝐴 ∪ 𝐷) be an information system [24], where 𝑈 is a non-empty set of finite objects (the 

universe) and 𝐴 is a non-empty finite set of attributes and 𝐷 is the set of decision attributes. This information 

system can be called as decision table. ∀𝑎 ∈ 𝐴, there exists a corresponding function 𝑓𝑎: 𝑈 → 𝑉𝑎, where  𝑉𝑎 

is the set of values that attribute 𝑎 take. If 𝑃 ⊆ 𝐴, there is an associated equivalence relation [24]: 

𝐼𝑁𝐷(𝑃) = {(𝑥, 𝑦) ∈ 𝑈2│∀𝑎 ∈ 𝑃, 𝑓𝑎(𝑥) = 𝑓𝑎(𝑦)}                                     (1) 

The partition of  𝑈 , generated by 𝐼𝑁𝐷(𝑃)  is denoted  𝑈 𝑃⁄ . If (𝑥, 𝑦) ∈ 𝐼𝑁𝐷(𝑃)  then 𝑥  and 𝑦  are 

indiscernible to 𝑃. The equivalence classes of the P-indiscernibility relation are denoted as [𝑥]𝑃. Let 𝑋 ⊆ 𝑈, 

the P-lower approximation 𝑃𝑋 and P-upper approximation 𝑃𝑋of set 𝑋 can be defined as [24]: 

  𝑃𝑋 = {𝑥 ∈ 𝑈|[𝑥]𝑃 ⊆ 𝑋}                                                              (2) 
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𝑃𝑋 = {𝑥 ∈ 𝑈|[𝑥]𝑃 ∩ 𝑋 ≠ ∅}                                                       (3) 

The objects in 𝑃𝑋 can be with certainty classified as members of 𝑋 on the basis of knowledge in 𝑃, while 

the objects in 𝑃𝑋 can be only classified as possible members of 𝑋 on the basis of knowledge in 𝑃. 

Let 𝑃 ⊆ 𝐴 and D is the decision attribute (class label) then the positive region can be defined as [24]: 

𝑃𝑂𝑆𝑃(𝐷) = ⋃ 𝑃𝑋𝑋∈𝑈 𝐷⁄                                                             (4) 

Positive region 𝑃𝑂𝑆𝑃(𝐷) is the set of all objects of 𝑈 that can be certainly classified to blocks of the 

partition 𝑈 𝐷⁄  by means of  𝑃. Then the dependency degree 𝛾𝑃(𝐷) can be calculated as [24]: 

𝑘 = 𝛾𝑃(𝐷) =
|𝑃𝑂𝑆𝑃(𝐷)|

|𝑈|
                                                              (5) 

If 𝑘 = 1, 𝐷 depends totally on 𝑃 if 0 < 𝑘 < 1, D depends partially on 𝑃, and if 𝑘 = 0 then D does not 

depend on 𝑃. 

 
4. The Proposed works 

4.1. Gaussian fuzzy discretization 

A fuzzy set 𝐴  of a non-empty set 𝑋  is defined as  )(, xx A  where Xx and ))(( xA  is the 

membership function of the fuzzy set 𝐴. A fuzzy set is a collection of objects with graded membership i.e. 

having degrees of membership [25]. 

In this paper, datasets are transformed by exploitation of a fuzzy membership function. A membership 

function is a curve that defines how each point in the input space is mapped to a membership value between 0 

and 1. A fuzzy membership function that is used to represent vague, linguistic terms is the Gaussian which is 

given in Equation (6). 

)
)(2
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exp()(

2

2

k

mx
xA


                                                           (6) 

Where 𝑚 is the centre and 𝑘 is the width of the fuzzy set A. 

Here, all the sample values for each feature are considered as a set. To find the membership function of 

this non-empty set, each feature values with respect to all the samples are fuzzified into three fuzzy qualifiers, 

small, medium and large. By applying the Gaussian membership function (Equation (7)), each feature values 

are normalized to a scale of 0 to 1, where 1 is the highest expression level and 0 is the lowest. Figure 2 shows 

the membership values of four random features. 

 

 

Fig. 2: Membership functions of four random features. 

 

The normalized dataset can be discretized using mean 𝜇 and standard deviation 𝜎  computed over 𝑛 

values of that gene [1]. Any value larger than (𝜇 + 𝜎 2⁄ )  is transformed to state 1; any value between (𝜇 −
𝜎 2⁄ )  and (𝜇 + 𝜎 2⁄ )  is transformed to state 0; any value smaller than (𝜇 − 𝜎 2⁄ )  is transformed to  -1.  

4.2. 2-level maximum relevance-maximum significance 
In high-dimensional data analysis such as microarray data, the dataset contains a number of insignificant 
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features. The presence of such irrelevant and insignificant features may affect the performance of machine 

learning algorithms. So, the selected features should have high relevance with the classes and high significance 

in the feature set. The features with high relevance are expected to be able to predict the classes of the samples. 

However, if insignificant features are present in the feature subset, they may reduce the classification accuracy. 

A feature set with high relevance and high significance enhances the predictive capability. In this paper, the 

rough set theory is used to select the relevant and significant features or genes from high-dimensional gene 

expression data sets. 

Let 𝐶 =  {𝐴1, 𝐴2, . . . 𝐴𝑖 … , 𝐴𝑗 , . . . , 𝐴𝑚}  denotes the set of 𝑚  features of a given high-dimensional 

microarray dataset and 𝐾 is the set of selected genes. The proposed algorithm maximizes dependency between 

a feature subset and a class label and also it maximizes the significance among the selected features. This paper 

uses the value of dependency degree as the relevance of the corresponding attributes.  To what extent an 

attribute is contributing to calculate the dependency on decision attribute can be calculated by the significance 

of that attribute. The change in dependency when an attribute is removed from the set of condition attributes 

is a measure of the significance of the attribute. The higher the change in dependency, the more significant the 

attribute is. The significance of attribute 𝐴 can be calculated as, 

 

𝜎𝐶(𝐷, 𝐴) = 𝛾𝐶(𝐷) − 𝛾𝐶−{𝐴}(𝐷)                                                            (7) 

If the significance is 0, then the attribute is dispensable. In the first level of proposed algorithm, the top-

100 features are selected which have high relevance with the classes. In the second level, the significance of 

those top-100 features is calculated. Then the top-25 features are selected which have high significance in the 

feature set. The 2-level MRMS algorithm is explained as follows. 

Input: Set of conditional attributes 𝐶, Decision attribute (class label) 𝐷 

Output: The top-25 features. 

(i) Initialize 𝐶 ←  {𝐴1, 𝐴2, . . . 𝐴𝑖 … , 𝐴𝑗 , . . . , 𝐴𝑚}, S← ∅ 

(ii) Calculate the relevance 𝛾𝐶(𝐷) of each feature  𝐴𝑖 ∈ 𝐶 

(iii) Select the feature 𝐴𝑖 as the most relevant feature that has the highest relevance value with 

decision attribute. 

(iv) S← 𝐴𝑖, 𝐶 ← 𝐶 − 𝐴𝑖 

(v) Combine 𝑆 with each feature in 𝐶 and calculate the relevance of these attributes. Choose the 

highest. Add in 𝑆. 

(vi) Repeat this step to find the top-100 features. 

(vii) Find the significance of all the 100 features in  𝑆. 

(viii) Then select the top-25 features with maximum significance. 

5. Results 

The proposed feature selection algorithm with GFD is examined in four different high-dimensional gene 

expression datasets. These datasets are publically available at Gene Expression Omnibus (GEO) website 

(https://www.ncbi.nlm.nih.gov/geo/) and details are given in Table 1. 

In this paper, the experimental comparison of the feature selection method with several well-regarded 

feature selection methods in terms of classification accuracy is provided. The 2-level MRMS algorithm selects 

a subset of top-25 relevant features from all the datasets. To evaluate the performance of the proposed 

algorithm, the well known classifiers SVM and kNN are employed. The selected genes are utilized for training 

the classifiers. The performance is evaluated using 10-fold cross validation. The radial basis kernel function is 

used for SVM classifier. The number of instance considered for determination of similarity with classes as 

three for kNN. The performance of the proposed method is compared with feature selection methods, chi-

square, information-gain, gain-ratio, reliefF. To demonstrate the performance of the algorithm, the top 5, 10, 

15, 20 and 25 genes are selected as features for classification. 
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Table 1: Description of the datasets 

Dataset GEO accession id No. of samples No. of genes No. of classes 

Breast GSE9574 29 22283 2 

Ovarian GSE12470 24 54675 2 

Prostate GSE32269 55 18288 2 

Autism GSE25507 146 54613 2 

 

Table 2: The classification accuracy using SVM classifier 

Classifiers SVM 

Datasets No. of features chi-square information-gain gain-ratio reliefF 
Proposed 

algorithm 

Breast 

5 70.81 73.60 72.19 74.00 74.00 

10 79.00 77.60 79.19 80.80 82.57 

15 84.87 84.61 85.33 87.12 87.12 

20 88.34 90.00 86.63 89.19 92.70 

25 92.17 93.50 93.50 94.87 94.87 

Ovarian 

5 72.57 71.28 72.00 72.00 72.57 

10 78.83 78.41 79.17 79.38 79.38 

15 82.18 82.71 81.11 80.32 82.34 

20 85.67 85.00 85.40 86.69 87.77 

25 87.70 86.40 86.40 86.40 88.73 

Prostate 

5 76.20 77.00 77.10 74.17 78.83 

10 77.71 80.25 80.78 78.13 80.81 

15 85.34 86.63 85.71 85.71 86.63 

20 87.77 86.63 89.37 90.70 92.57 

25 89.80 88.50 89.11 92.20 93.00 

Autism 

5 80.33 79.83 78.65 77.14 80.72 

10 85.17 86.12 86.83 85.57 87.52 

15 92.35 91.67 89.80 91.80 93.15 

20 98.60 97.20 96.97 97.81 98.19 

25 98.60 97.20 97.20 98.80 100 
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Table 3: The classification accuracy using kNN classifier 

Classifiers kNN 

Datasets 
No. of 

features 
chi-square information-gain gain-ratio reliefF 

Proposed 

algorithm 

Breast 

5 71.51 74.52 72.25 74.00 75.14 

10 79.83 79.16 79.57 81.00 82.87 

15 85.72 86.68 87.30 88.70 88.70 

20 89.37 90.78 88.54 90.16 93.40 

25 93.00 93.50 94.00 94.15 95.85 

Ovarian 

5 72.20 71.16 70.78 70.00 72.00 

10 77.20 75.25 78.01 77.13 78.87 

15 80.17 80.00 80.77 79.06 80.66 

20 84.23 85.80 84.18 86.20 86.16 

25 87.23 85.62 86.15 86.20 87.92 

Prostate 

5 64.30 66.50 66.50 67.00 65.77 

10 70.13 72.82 70.82 72.75 72.89 

15 77.83 82.17 80.13 82.00 83.71 

20 84.27 86.92 85.73 88.25 90.23 

25 85.57 86.92 86.92 90.18 90.60 

Autism 

5 77.77 76.39 75.14 76.62 79.97 

10 84.58 84.58 85.14 84.38 85.18 

15 90.67 90.85 88.67 90.35 91.81 

20 95.20 95.85 95.85 97.81 98.80 

25 97.77 97.45 96.88 98.80 98.80 

 

As a general conclusion, for all the datasets, the accuracy performance is improved by using 2-level 

MRMS feature selection mostly in all cases. Also, SVM performs better than kNN due to its suitability for 

high dimensional data.  

Furthermore, the results in this study are validated in Tables 4 and 5 by conducting a statistical paired 

samples one-tailed test. This statistical test is used to verify whether there is any significant difference in the 

accuracy and the number of selected genes by using a significance interval of 95% (a = 0.05). The results of 

this study show that most of the p-values obtained are less than 0.05. This means that there is a significant 

difference in the accuracy and the number of selected genes in the method used in this study as compared to 

the other methods on all datasets, respectively.  
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Table 4: p-Values between proposed and other methods about accuracy with SVM 

Methods 

p-Values 

Breast Ovarian Prostate Autism 

Proposed vs. chi-square 0.000 0.028 0.019 0.077 

Proposed vs. information-gain 0.008 0.036 0.059 0.015 

Proposed vs. gain-ratio 0.015 0.024 0.022 0.008 

Proposed vs. reliefF 0.052 0.011 0.180 0.096 

 

Table 5: p-Values between proposed and other methods about accuracy with kNN 

Methods 

p-Values 

Breast Ovarian Prostate Autism 

Proposed vs. chi-square 0.001 0.013 0.003 0.003 

Proposed vs. information-gain 0.010 0.058 0.044 0.009 

Proposed vs. gain-ratio 0.013 0.051 0.025 0.033 

Proposed vs. reliefF 0.012 0.027 0.018 0.021 

 

In order to understand whether the proposed algorithm is able to extract interactions with a biological 

meaning, the differential gene subset selected by this method are analyzed by conducting the gene set 

enrichment analysis on the DAVID tool (Database for Annotation, Visualization, and Integrated Discovery). 

DAVID is able to provide a comprehensive set of functional annotation tools for investigators to understand 

the biological meaning behind a large list of genes [26]. The top-25 genes selected by using the proposed 

method are supplied into the DAVID website (https://david.ncifcrf.gov/home.jsp). The Functional Annotation 

Tool is utilized to achieve the Functional Annotation Clustering results (the Classification Stringency is set to 

High). The group Enrichment Score (ES) and the geometric mean of the member’s p-values in a corresponding 

annotation cluster, is used to rank their biological significance. Thus, the top ranked annotation clusters most 

likely have consistently lower p-values for their annotation members. The larger the enrichment score, the 

more enriched is the gene subset. In this study, the first value from the top annotation cluster having the largest 

ES, and the concerned terms having similar biological meanings are presented in Table 6. It is seen that the 

genes selected by 2-level MRMS are related to genes that belong to the cancer-related Gene Ontology (GO) 

terms).  

To further verify the proposed method’s effectiveness, the biological annotations of top genes for each 

dataset are identified. Table 7 lists the significant shared GO terms or parent of GO terms used to describe the 

top-25 genes in each dataset for the process, function and component ontologies. For example, for the Breast 

dataset, the genes are mainly involved in cell differentiation, nucleoplasm and translation initiation factor 

activity. 

The genes selected by the proposed feature selection algorithm using GF-discretized data are analyzed to 

identify the biological significance of them. Table 8 shows the genes related to the diseases. NR4A3 shows 

the early induction of the orphan nuclear receptor during cell death of the human breast cancer cell line [27]. 

The expression level of JUN modulates regulation of activator protein activity by estradiol in breast cancer 

cells [28]. Increased MUC1 immunoreactivity was observed in adencarcinomas of the breast, pancreas and 

ovary [29]. SPON1 was originally isolated from bovine ovarian follicular fluid as a stimulator of vascular 

smooth muscle cell proliferation [30]. KLK3 is a secreted protein that is widely used as a diagnostic marker 

https://david.ncifcrf/
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for prostate cancer [31]. GFI1 plays a significant role in the down regulation of endogenous production of 

1,25D in prostate cancer cells [32]. LXN prediction of personality disorder is susceptible to state effects of 

depression [33]. CD36 is over expressed in human brain that correlates with beta-amyloid deposition [34].  

 

Table 6: The enrichment analysis results about annotation cluster by DAVID 

Dataset Annotation cluster Enrichment score 

Breast 

GO:0000982~transcription factor activity, 

GO:0032870~cellular response to hormone stimulus, 

GO:0042493~response to drug, 

GO:0032570~response to progesterone 

2.69 

Ovarian 
GO:0005615~extracellular space 

GO:0016021~integral component of membrane 
1.23 

Prostate 

GO:0070062~extracellular exosome 

GO:0005887~integral component of plasma membrane 

GO:0005576~extracellular region 

1.49 

Autism 

GO:0005886~plasma membrane 

GO:0005654~nucleoplasm 

GO:0016021~integral component of membrane 

GO:0003677~DNA binding 

1.38 

 

Table 7. Significant GO terms 

Dataset Biological Process Cellular Component Molecular Function 

Breast 
skeletal muscle cell 

differentiation 
nucleoplasm translation initiation factor 

Ovarian cell morphogenesis extracellular space flavin adenine dinucleotide binding 

Prostate immune response extracellular region carbohydrate binding 

Autism 
antibacterial humoral 

response 

proteinaceous extracellular 

matrix 

protein serine/threonine/tyrosine kinase 

activity 

A heat-map is a two-dimensional representation of data in which values are represented by colors. 

Heat-maps originate in 2D displays of the values in a data matrix. Larger values are represented by small dark 

squares (pixels) and smaller values by lighter squares. Each row shows the expression levels of one selected 

feature, and each column is a sample. Figure 3 shows the heat-maps depicting the predictive performance of 

the genes selected by the proposed feature selection algorithm. From the Figure 3(a), it can be observed that 

there is a visible border between two classes of the Breast dataset. Figure 3(b) depicts a cut between two classes 

of the Ovarian dataset. The good performance of the selected genes for the Prostate dataset is also shown in 

Figures 3(c).  
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Table 8. Genes related to diseases 

Dataset Probe Id Gene name 

Breast 

 

216979_at 

 

NR4A3 

 213281_at 

 

JUN 

 209909_s_at 

 

TGFB2 

 214056_at 

 

MCL1 

 

Ovarian 

 

201010_s_at 

 

TXNIP 

 213693_s_at 

 

MUC1 

 206458_s_at 

 

SPON1 

 230943_at 

 

SOX17 

 202037_s_at 

 

SFRP1 

 

Prostate 

 

204582_s_at 

 

KLK3 

 206589_at 

 

GFI1 

 207008_at 

 

CXCR2 

 211163_s_at 

 

TNFRSF10C 

 

Autism 

218729_at 

 

LXN 

 
221663_x_at 

 

HRH3 

 230100_x_at 

 

PAK1 

 209554_at 

 

CD36 
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Fig. 3: Heat-map (a) Breast; (b) Ovarian; (c) Prostate; (d) Autism. 

6. Conclusion 

This paper provides information on the performance of different feature selection techniques for 

microarray datasets. In this work, a new discretization method, GFD is introduced to discretize the continuous 

gene expression datasets. Also, 2-level MRMS feature selection is developed based on rough set theory. It 

identifies the subset of significant genes by maximizing the relevance and significance of the selected genes 

from four microarray datasets.  The performance of the proposed algorithm is studied with respect to two 

important criteria. First, it compares the performance of the proposed method and some existing methods using 

the predictive accuracy of k-NN and SVM classifiers. The experimental results demonstrate that the 

classification accuracy is improved with the top-25 genes selected with the proposed algorithm. Secondly, the 

gene subset selected by the proposed method is analyzed by conducting the gene set enrichment analysis on 

the DAVID tool. The genes selected by 2-level MRMS are related to genes that belong to the similar Gene 

Ontology terms. The heat-maps are also visualized. The results illustrate that the proposed feature selection 

algorithm can be used to increase the quality of high-dimensional gene selection.  

7. References  

[1] Rinaldis ED, Lahm A. (2007). DNA Microarrays: Current Applications. Norfolk, UK: Horizon Bioscience. 

[2] Pena, J.M., Lozano, J.A., Larranaga, P. and Inza, I. (2001). Dimensionality reduction in unsupervised learning of 

conditional Gaussian networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 590–603. 

[3] Horng, J.T., Wu, L.C., Liu, B.J., Kuo, J.L., Kuo, W.H., and Zhang, J.J. (2009). An expert system to classify 

microarray gene expression data using gene selection by decision tree. Expert Systems with Applications, 36(5), 

9072–9081. 

[4] Arauzo Azofra, A., Aznarte, J. L., and Benítez, J. M. (2011). Empirical study of feature selection methods based on 

individual feature evaluation for classification problems. Expert Systems with Applications, 38(7), 8170–8177.  

[5] Bhattacharyya, D.K, Kalita, J.K. (2013). Network Anomaly Detection: A Machine Learning Perspective. 1st ed. Boca 

Raton, FL, USA: CRC Press. 

[6] Hoque, N, Bhattacharyya, D.K, Kalita J.K. (2014). MIFS-ND: A mutual information – based feature selection method. 

Expert Systems with Applications, 41(14), 6371–6385. 

[7] Min N, Hu Q, Zhu W. (2014). Feature selection with test cost constraint. International Journal of Approximate 

Reasoning, 55(1): 167-179. 

[8] Tabakhi, S, Moradi, P, Akhlaghian, F. (2014). An unsupervised feature selection algorithm based on ant colony 

optimization. Engineering Applications of Artificial Intelligence, 32: 112-123 

[9] Jenson, R., Shen, Q. (2009). New Approaches to fuzzy-rough feature selection, IEEE Transactions on Fuzzy Systems, 

17(4), 824-838. 

[10]  Guyon, I, Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning 

Research, 3, 1157-1182. 

[11]  Blum, A.L, Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial 

Intelligence, 97(1), 245–271. 

[12]  Hsu, H.H, Hsieh, C.W, Lu, M.D. (2011). Hybrid feature selection by combining filters and wrappers. Expert Systems 

with Applications, 38(7), 8144–8150. 

[13]  Jensen, R, Shen, Q. (2004). Fuzzy-rough attribute reduction with application to web categorization. Fuzzy Sets and 

Systems, 141(3), 469–485. 

[14]  Wu, W, Zhang, W. (2004). Constructive and axiomatic approaches of fuzzy approximation operators. Information 

Sciences, 159(3), 233–254. 

[15]  Jensen, R. and Shen, Q. (2004). Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based 

approach. IEEE Transactions on Knowledge and Data Engineering, 16 (12), 1457–1471. 

[16]  Yumin, C., Duoqian, M. and Ruizhi, W. (2010). A Rough Set approach to feature selection based on ant colony 

optimization. Pattern Recognition Letters, 31(3), 226-233.  

[17]  Han, J., Rodriguez J.C., Beheshti M. (2010). Discovering decision tree based diabetes prediction model. In 

Proceedings of the International Conference on ASEA:  Advanced Software Engineering and Its Applications. (pp.99-

109).  

[18]  Hu, Q., Xie, Z. and Yu, D. (2007). Hybrid attribute reduction based on a novel fuzzy-rough model and information 

granulation, Pattern recognition, 40(12), 3509- 3521.  

[19]  Jensen, R. and Shen, Q. (2007). Fuzzy-rough sets assisted attribute selection, Transactions on Fuzzy Systems, 15(1), 

73-89.  



Prema Ramasamy et al.：Fuzzy Discretization and Rough Set based Feature Selection for  

High-Dimensional Classification 

 

 

JIC email for contribution: editor@jic.org.uk 

178 

[20]  Yao, Y. and Zhao, Y. (2008). Attribute reduction in decision theoretic rough set models, Information Sciences, 

178(17), 3356-3373.  

[21]  Cornelis, C., Jensen, R. and Hurtado, G. (2010). Attribute selection with fuzzy decision reducts. Information Sciences, 

180(2), 209-224.  

[22]  Zhang, J., Dong, A., Niu, Y. and Nie, H. (2011). An Efficient Algorithm for Attribute Reduction Based on 

Discernibility Matrix. In Proceedings of the International Conference on Intelligent Computation and Bio-Medical 

Instrumentation. (pp. 175-178).  

[23]  Zahra, S. and Reza, G. (2012). Fuzzy-rough feature selection and a fuzzy 2-level complementary approach for 

classification of gene expression data. Scientific Research and Essays, 7(14), 1512-1520.  

[24]  Pawlak, Z. Rough Sets. (1991). Theoretical Aspects of Resoning About data. Dordrecht, The Netherlands: Kluwer. 

[25]  Zadeh, L.A. (1965). Fuzzy sets. Inform Control, 8: 338-353. 

[26]  Dennis, G. J. et al. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome 

Biology, 4. 

[27]  Ohkubo, T., Ohkura, N., Sasaki, K., Nagasaki, K., Hanzawa, H., Tsukada, T., Yamaguchi, K. (2000). Early induction 

of the orphan nuclear receptor NOR-1 during cell death of the human breast cancer cell line MCF-7. Molecular and. 

Cellular Endocrinology, 162(1), 151-156. 

[28]  Philips, A., Teyssier, C., Galtier, F., Rivier-Covas, C., Rey, J.M., Rochefort, H., Chalbos, D. (1998). FRA-1 

expression level modulates regulation of activator protein-1 activity by estradiol in breast cancer cells. Molecular 

Endocrinology, 12(7), 973-985. 

[29]  Ho, SB., Niehans, G.A., Lyftogt, C., Yan, P.S., Cherwitz, D.L., Gum, E.T., Dahiya, R., Kim, Y.S. (1993). 

Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Research. 53(3), 641-651. 

[30]  Terai, Y., Abe, M., Miyamoto, K., Koike, M., Yamasaki, M., Ueda, M., Ueki, M., Sato, Y. (2001). Vascular smooth 

muscle cell growth-promoting factor/F-spondin inhibits angiogenesis via the blockade of integrin alphavbeta3 on 

vascular endothelial cells. Journal of Cellular Physiology, 188(3), 394-402. 

[31]  Xi, Z., Klokk, T.I., Korkmaz, K., Kurys, P., Elbi, C., Risberg, B., Danielsen, H., Loda, M., Saatcioglu, F. (2004). 

Kallikrein 4 is a predominantly nuclear protein and is overexpressed in prostate cancer.  Cancer Research, 64(7), 

2365-2370. 

[32]  Dwivedi, P.P., Anderson, P.H., Tilley, W.D., May, B.K., Morris, H.A. J. (2007). Role of oncoprotein Growth Factor 

Independent-1 (GFI1) in repression of 25-hydroxyvitamin D 1alpha-hydroxylase (CYP27B1): A comparative 

analysis in human prostate cancer and kidney cells.  Journal of Steroid Biochemistry and Molecular Biology, 103(3), 

742-746.  

[33]  Black, K.J., Sheline, Y.I. (1997). Personality disorder scores improve with effective pharmacotherapy of depression. 

43(1), 11-18. 

[34]  Ricciarelli, R., D'Abramo, C., Zingg, J.M., Giliberto, L., Markesbery, W., Azzi, A., Marinari, U.M., Pronzato, M.A., 

Tabaton, M. (2004). CD36 overexpression in human brain correlates with beta-amyloid deposition but not with 

Alzheimer's disease. Free Radical Biology and Medicine, 36(8), 1018-1024. 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Philips%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9658402
https://www.ncbi.nlm.nih.gov/pubmed/?term=Teyssier%20C%5BAuthor%5D&cauthor=true&cauthor_uid=9658402
https://www.ncbi.nlm.nih.gov/pubmed/?term=Galtier%20F%5BAuthor%5D&cauthor=true&cauthor_uid=9658402
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rivier-Covas%20C%5BAuthor%5D&cauthor=true&cauthor_uid=9658402
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rey%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=9658402
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rochefort%20H%5BAuthor%5D&cauthor=true&cauthor_uid=9658402
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chalbos%20D%5BAuthor%5D&cauthor=true&cauthor_uid=9658402
https://www.wikigenes.org/e/ref/e/9658402.html
https://www.wikigenes.org/e/ref/e/9658402.html
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ho%20SB%5BAuthor%5D&cauthor=true&cauthor_uid=7678777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Niehans%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=7678777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lyftogt%20C%5BAuthor%5D&cauthor=true&cauthor_uid=7678777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yan%20PS%5BAuthor%5D&cauthor=true&cauthor_uid=7678777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cherwitz%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=7678777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gum%20ET%5BAuthor%5D&cauthor=true&cauthor_uid=7678777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dahiya%20R%5BAuthor%5D&cauthor=true&cauthor_uid=7678777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20YS%5BAuthor%5D&cauthor=true&cauthor_uid=7678777
https://www.wikigenes.org/e/ref/e/7678777.html
https://www.wikigenes.org/e/ref/e/11473366.html
https://www.wikigenes.org/e/ref/e/11473366.html
https://www.wikigenes.org/e/ref/e/11473366.html
https://www.wikigenes.org/e/ref/e/15059887.html
https://www.wikigenes.org/e/ref/e/17207994.html
https://www.wikigenes.org/e/ref/e/17207994.html
https://www.wikigenes.org/e/ref/e/17207994.html
https://www.wikigenes.org/e/ref/e/9127826.html
https://www.wikigenes.org/e/ref/e/15059642.html
https://www.wikigenes.org/e/ref/e/15059642.html

