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Abstract. Based on Laguerre wavelets, an efficient numerical method is proposed for the numerical solution of 

initial and boundary value Bratu-type problems arising in fuel ignition of the combustion theory and heat transfer. 

Convergence of the method for these kinds of problems is addressed in the form of theorems with proof. To illustrate 

the ability of the method is validated on test problems, numerical results are compared with exact and those from 

existing methods in the literature. The results demonstrate the accuracy and the efficiency of the Laguerre wavelet 

based numerical method. 
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1. Introduction  

Wavelet theory is a relatively new and an emerging area in mathematical research. Wavelets permit the 

accurate representation of a variety of functions and operators. Moreover, wavelets establish a connection with 

fast numerical algorithms. The main advantage of using orthogonal basis is that it reduces the problem into 

solving a system of algebraic equations. In recent years, the wavelets are dealing with dynamic system 

problems, especially in solving differential equations with two-point boundary value constraints have been 

discussed in many papers [13, 19]. By transforming differential equations into algebraic equations, the solution 

may be found by determining the corresponding coefficients that satisfy the algebraic equations. Some efforts 

have been made to solve Bratu’s problem by using the wavelet collocation method [19]. 

Nonlinear phenomena are of fundamental importance in various fields of science and engineering. The 

nonlinear models of real-life problems are still difficult to solve either analytically or numerically. Now a day’s 

our attention devoted to the search for better and more efficient solution methods for determining a solution. 

We mention that the spectral collocation method is very useful in providing highly accurate solutions to 

nonlinear differential equations [11]. Here, we intend to extend the application of Laguerre wavelet method to 

solve nonlinear initial value problems and boundary value problems of Bratu type. To the best of our 

knowledge, there are no results on Laguerre wavelet approximation for Bratu type equations arising in 

mathematical physics. This partially motivated our interest in such method. The aim of this paper is to study 

convergence of Laguerre wavelet method for boundary and initial value Bratu-type problems [1, 18, 19]. 

It is well known that Bratu’s boundary value problem in one-dimensional planar coordinates is of the 

form  

                               𝑦′′ + 𝛽𝑒𝑦 = 0,   0 < 𝑥 < 1                                                        (1.1) 

with boundary conditions 𝑦(0) = 𝑦(1) = 0. for 𝛽 > 0 is constant, the exact solution of (1.1) is given by [5], 

                                                 𝑦(𝑥) = −2𝑙𝑛 [
𝑐𝑜𝑠ℎ(

𝜃(𝑥−
1
2

2
)

𝑐𝑜𝑠ℎ(
𝜃

2
)

]                                                  (1.2) 

where 𝜃 satisfies, 

                                       𝜃 = √2𝛽𝑠𝑖𝑛ℎ (
𝜃

2
)                                                              (1.3) 

The problem has zero, one and two solutions when 𝛽 > 𝛽𝑐 , 𝛽 = 𝛽𝑐 , 𝑎𝑛𝑑 𝛽 < 𝛽𝑐 , respectively, where 

the critical value 𝛽𝑐 satisfies the equation, 
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1 =
1

4
√2𝛽𝑐𝑐𝑜𝑠ℎ (

𝜃

4
). 

The critical value  𝛽𝑐 is given by 𝛽𝑐 = 3.513830719 [3, 7, 8]. 

In addition, an initial value problem of Bratu’s type, 

                    𝑦′′ + 𝛽𝑒𝑦 = 0,   0 < 𝑥 < 1                                                                   (1.4) 

with initial conditions 𝑦(0) = 𝑦′(0) = 0 will be investigated. 

Applications of the Bratu type equations are employed in the fuel ignition model of the thermal 

combustion theory, the model of thermal reaction process, the Chandrasekhar model of the expansion of the 

universe, chemical reaction theory, radioactive heat transfer and nanotechnology [6]. A substantial amount of 

research work has been directed for the study of the Bratu problem [3, 6, 10, 17]. Several numerical techniques, 

such as the finite difference method, finite element approximation, weighted residual method, and the shooting 

method, have been implemented independently to handle the Bratu model. In addition, Boyd [6] employed 

Chebyshev polynomial expansions and the Gegenbauer as base functions. Syam and Hamdan [15] presented 

the Laplace Adomain decomposition method (LADM) for solving Bratu’s problem. 

In this paper, Laguerre wavelet based numerical method is presented for the approximate solution of 

Bratu’s problem. The method is based on expanding the solution by Laguerre wavelets with unknown 

coefficients. The properties of Laguerre wavelets together with the collocation method are utilized to evaluate 

the unknown coefficients and then an approximate solution to eq. (1.1) is identified. 

The organization of the rest of the paper is as follows. In section 2, properties of Laguerre wavelet are 

described. In section 3, formulation of the method based on Laguerre wavelet is defined for initial and 

boundary value Bratu-type problems. Analysis of the Laguerre wavelet method for Bratu-type problems is 

presented in section 4 in the form of theorems with proof. Numerical results are reported in section 5, and 

finally conclusions are drawn in section 6. 

2. Properties of Laguerre wavelet 

Wavelets constitute a family of functions constructed from dilation and translation of a single function 

called the mother wavelet. When the dilation parameter a and the translation parameter b varies continuously, 

we have the following family of continuous wavelets: 

ψa,b(x) = |a|
−1
2  ψ (

x − b

a
) , a, b ∈ R, a ≠ 0. 

If we restrict the parameters a and b to discrete values as 

a = a0
−𝑘, 𝑏 = 𝑛𝑏0a0

−𝑘, a0 > 1, 𝑏0 > 0, 
we have the following family of discrete wavelets : 

ψk,n(x) = |a0|
1
2 ψ(a0

kx − nb0). 

Where ψk,n form a wavelet basis for L2(R). In particular, when a0 = 2 and b0 = 1, then ψk,n(x) forms an 

orthonormal basis. 

The Laguerre wavelets  ψk,n(x) =  ψ(k, n, m, x)  involve four arguments n =1, 2, 3,...,2𝑘−1,  k is 

assumed any positive integer, m is the degree of the Laguerre polynomials and it is the Normalized time. They 

are defined on the interval [0, 1) as  

 𝜓𝑘,𝑛(𝑥) = {2
𝑘

2𝐿̅𝑚(2𝑘𝑥 − 2𝑛 + 1),   
𝑛−1

2𝑘−1 ≤ 𝑥 <
𝑛

2𝑘−1

0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
                             (2.1) 

where L̅m(x) =
Lm

m!
                                                                                     (2.2) 

m = 0, 1, 2... M-1. In eq. (1.2) the coefficients are used for orthonormality. Here Lm(x) are the Laguerre 

polynomials of degree m with respect to the weight function W(x) =1 on the interval [0,∞) and satisfy the 

following recursive formula   L0(x) = 1,   L1(x) = 1 − x , 

𝐿𝑚+2(𝑥) =
(2𝑚 + 3 − 𝑥)𝐿𝑚+1(𝑥) − (𝑚 + 1)𝐿𝑚(𝑥)

𝑚 + 2
, 𝑚 = 0,1,2 … 

A function 𝑦(𝑥) defined over [0, 1) can be expanded as a laguerre wavelet series as follows: 
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𝑦(𝑥) = ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥)

∞

𝑚=0

∞

𝑛=1

 

where 𝜓𝑛,𝑚(𝑥) is given by the eq. (2.1). We approximate y(x) by truncated series  

𝑦(𝑥) ≈ ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥) = 𝐶𝑇ψ(x) 𝑀−1
𝑚=0

2𝑘−1

𝑛=1                           (2.3) 

where C and ψ(x) are 2k−1M × 1 matrices given by 

𝐶𝑇 =    [𝐶1,0, . . . , 𝐶1,𝑀−1,𝐶2,0, … , 𝐶2,𝑀−1, … , 𝐶2𝑘−1,0, … , 𝐶2𝑘−1,𝑀−1 ]. 

ψ(x) = [𝜓1,0, … , 𝜓1,𝑀−1,𝜓2,0, … , 𝜓2,𝑀−1, … , 𝜓2𝑘−1,0, … , 𝜓2𝑘−1,𝑀−1]. 

3. Laguerre wavelet numerical method of solution  

Consider Bratu’s problem given in eq. (1.1), in order to use Laguerre wavelet, we first approximate 

𝑦(𝑥) as  

                                                     𝑦(𝑥) = 𝐶𝑇ψ(x)                                                    (3.1) 

Here, 

𝐶𝑇 =    [𝐶1,0, . . . , 𝐶1,𝑀−1,𝐶2,0, … , 𝐶2,𝑀−1, … , 𝐶2𝑘−1,0, … , 𝐶2𝑘−1,𝑀−1 ]. 

ψ(x) = [𝜓1,0, … , 𝜓1,𝑀−1,𝜓2,0, … , 𝜓2,𝑀−1, … , 𝜓2𝑘−1,0, … , 𝜓2𝑘−1,𝑀−1]. 
Applying eq. (3.1) in eq. (1.1) we get, 

𝑑2

𝑑𝑥2
∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥)𝑀−1

𝑚=0
2𝑘−1

𝑛=1 + β exp (∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥)𝑀−1
𝑚=0

2𝑘−1

𝑛=1 ) = 0.         (3.2)                       

Then a total number of  2𝑘−1𝑀 equations should exist to determine the 2𝑘−1𝑀 coefficients such as, 

   𝐶10, 𝐶11, , . . . , 𝐶1𝑀−1,𝐶20, 𝐶21, … , 𝐶2𝑀−1, … , 𝐶2𝑘−10, 𝐶2𝑘−11, … , 𝐶2𝑘−1𝑀−1 . 
Since two conditions are furnished by the boundary conditions, namely 

                                          {
𝑦𝑘,𝑀(0) = ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(0) = 0𝑀−1

𝑚=0
2𝑘−1

𝑛=1

𝑦𝑘,𝑀(1) = ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(1)𝑀−1
𝑚=0

2𝑘−1

𝑛=1 = 0
                               (3.3) 

or initial conditions, namely 

   {
𝑦𝑘,𝑀(0) = ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(0) = 0𝑀−1

𝑚=0
2𝑘−1

𝑛=1
𝑑

𝑑𝑥
𝑦𝑘,𝑀(0) =

𝑑

𝑑𝑥
∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(0)𝑀−1

𝑚=0
2𝑘−1

𝑛=1 = 0
                               (3.4) 

Further we need 2𝑘−1𝑀 − 2 equations to recover the unknown coefficients  𝐶𝑛,𝑚. These equations can 

be obtained by collocating eq. (3.2): 

We, now assume eq. (3.2) is exact at 2𝑘−1𝑀 − 2 points 𝑥𝑖 as follows: 
𝑑2

𝑑𝑥2
∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥𝑖)𝑀−1

𝑚=0
2𝑘−1

𝑛=1 + βexp (∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥𝑖)𝑀−1
𝑚=0

2𝑘−1

𝑛=1 ) = 0.      (3.5) 

Suitable collocation points are limit points of following sequence: 

 {𝑥𝑖} = {
1

2
(1 + cos

(𝑖−1)𝜋

2𝑘−1𝑀−1
)}    𝑖 = 2.3, ….                                              (3.6) 

Combine eqs. (3.5) and (3.3) or (3.5) and (3.4) to obtain 2𝑘−1𝑀 equations from which we can compute 

values for the unknown coefficients  𝐶𝑛,𝑚. Same procedure is repeated for differential equations of higher 

order also. 

4. Analysis of the Laguerre wavelet method for Bratu-type problems 

Theorem 1. The series of Laguerre wavelet  ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥)∞
𝑚=0

∞
𝑛=1  is converges to 𝑦(𝑥). 

Proof: 𝐿2(𝑅) be the infinite dimensional Hilbert space and 𝜓𝑛,𝑚(𝑥)  is defined as  

𝜓𝑛,𝑚(𝑥) = {2
k
2L̅m(2kx − 2n + 1),   

n − 1

2k−1
≤ x <

n

2k−1

0                                otherwise               

 

forms orthonormal basis, 

Let 𝑦(𝑥) = ∑ 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥)𝑀−1
𝑖=0   where  𝐶𝜂,𝑖 =< 𝑦(𝑥), 𝜓𝜂,𝑖(𝑥) >  for fixed  𝜂. 
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Let us define the sequence of partial sums 𝑆𝑛 of { 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥) }, let  𝑆𝑛  and 𝑆𝑚 are the partial sums with 

n ≥ m. We have to prove 𝑆𝑛 is Cauchy sequence in Hilbert space 𝐿2(𝑅)  .  

Choose  𝑆𝑛 = ∑ 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥)𝑛
𝑖=0 ,  

Now < 𝑦(𝑥),  𝑆𝑛 > = < 𝑦(𝑥), ∑ 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥)𝑛
𝑖=0 > =  ∑ |𝐶𝜂,𝑖|2𝑛

𝑖=𝑚+1  

We claim that  || 𝑆𝑛 − 𝑆𝑚||2 = ∑ |𝐶𝜂,𝑖|2         ∀  𝑛 > 𝑚𝑛
𝑖=𝑚+1   

Now || ∑ 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥)𝑛
𝑖=𝑚+1 ||2 =< ∑ 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥)𝑛

𝑖=𝑚+1 , ∑ 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥)𝑛
𝑖=𝑚+1 > 

|| ∑ 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥)

𝑛

𝑖=𝑚+1

||2 = ∑ |𝐶𝜂,𝑖|2         ∀  𝑛 > 𝑚

𝑛

𝑖=𝑚+1

 

By Bessel’s Inequality  

Since  ∑ |𝐶𝜂,𝑖|2 ≤𝑛
𝑖=𝑚+1 ||𝑦(𝑥)||2,  

Therefore ∑ |𝐶𝜂,𝑖|2𝑛
𝑖=1  is bounded and convergent. 

Hence || ∑ 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥)𝑛
𝑖=𝑚+1 ||2 → 0 𝑎𝑠 𝑚, 𝑛 → ∞. 

This implies  || ∑ 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥)𝑛
𝑖=𝑚+1 || → 0. 

Therefore {  𝑆𝑛 } is a Cauchy sequence and it converges to K (say) 

We assert that   𝑦(𝑥) = 𝐾 

Now < 𝐾 −  𝑦(𝑥), 𝜓𝜂,𝑖(𝑥) >=< 𝐾, 𝜓𝜂,𝑖(𝑥) > −< 𝑦(𝑥), 𝜓𝜂,𝑖(𝑥) > 

< 𝐾 −  𝑦(𝑥), 𝜓𝜂,𝑖(𝑥) >=< 𝐾, 𝜓𝜂,𝑖(𝑥) > −< lim𝑛→∞  𝑆𝑛 , 𝜓𝜂,𝑖(𝑥) >= 0  

Therefore  < 𝐾 −  𝑦(𝑥), 𝜓𝜂,𝑖(𝑥) >= 0 

Hence 𝑦(𝑥) = 𝐾  and ∑ 𝐶𝜂,𝑖𝜓𝜂,𝑖(𝑥)𝑛
𝑖=0   converges to 𝑦(𝑥) as 𝑛 → ∞ and hence proved. 

Theorem 2.  If  𝛹𝑖,𝑗’s are Laguerre wavelets then  𝛹𝑖,𝑗’s are uniformly continuous on interval I= [0, 1). 

Proof:  Laguerre Wavelets are lipschitz functions. 

Then given 𝜀 > 0, we can choose 𝛿 =
𝜀

𝑘
 . 

If 𝑥1, 𝑥2 𝜖 𝐼 with |𝑥1 − 𝑥2| < 𝛿 then | 𝛹𝑖,𝑗(𝑥1) −  𝛹𝑖,𝑗(𝑥2)| < 𝑘 ∙
𝜀

𝑘
= 𝜀. 

Therefore   𝛹𝑖,𝑗  are uniformly continuous on interval I. 

 

Corollary: If Laguerre wavelets   𝛹𝑖,𝑗  are uniformly continuous on interval I then they are continuous. 

 

Theorem 3. If  𝛹𝑖,𝑗: 𝐼 → 𝑅 is uniformly continuous on subset I of R and {𝑥𝑛} is a Cauchy sequence in I 

then { 𝛹𝑖,𝑗(𝑥𝑛)} is Cauchy sequence in R. 

Proof. Let {𝑥𝑛} is Cauchy sequence in I. 𝜀 > 0 being given.  

Choose 𝛿 > 0 such that If 𝑥1, 𝑥2𝜖 𝐼  satisfy |𝑥1 − 𝑥2| < 𝛿   ∀ 𝑛, 𝑚 ≥ 𝛿1  (by choice of   𝛿 ). We 

have  | 𝛹𝑖,𝑗(𝑥1) −  𝛹𝑖,𝑗(𝑥2)| < 𝜀. 

Hence { 𝛹𝑖,𝑗(𝑥𝑛)} is a Cauchy sequence. 

 

Theorem 4. Suppose that y(x) ∈ Cm[0,1] and CTψ(x) is the approximate solution using Laguerre 

wavelet. Then the error bound would be given by 

||E(x)|| ≤ ||
2

m! 4m2m(k−1)
max

x∈[0,1]
|ym(x)| ||. 

 

Proof. Applying the definition of norm in the inner product space, we have,  

||E(x)||2 = ∫ [y(x) − CTψ(x)]2dx.
1

0

 

Divide interval [0, 1] into 2𝑘−1 subintervals 𝐼𝑛 = [
𝑛−1

2𝑘−1 ,
𝑛

2𝑘−1] , 𝑛 = 1,2,3, … , 2𝑘−1. 
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||E(x)||2 = ∑ ∫ [y(x) − CTψ(x)]2dx.

𝑛

2𝑘−1

𝑛−1

2𝑘−1

2𝑘−1

n=1

 

||E(x)||2 ≤ ∑ ∫ [y(x) − pm(x)]2dx.

𝑛

2𝑘−1

𝑛−1

2𝑘−1

2𝑘−1

n=1

 

Where pm(x)  is the interpolating polynomial of degree m which approximates  y(x) on 𝐼𝑛. 

By using the maximum error estimate for the polynomial on  𝐼𝑛, then 

||E(x)||2 ≤ ∑ ∫ [
2

m! 4m2m(k−1)
max
x∈𝐼𝑛.

|ym(x)|]
2

dx

𝑛

2𝑘−1

𝑛−1

2𝑘−1

2𝑘−1

n=1

 

||E(x)||2 ≤ ∑ ∫ [
2

m! 4m2m(k−1)
max

x∈[0,1]
|ym(x)|]

2

dx

𝑛

2𝑘−1

𝑛−1

2𝑘−1

2𝑘−1

n=1

 

||E(x)||2 = ∫ [
2

m! 4m2m(k−1)
max

x∈[0,1]
|ym(x)|]

2

dx
1

0

 

||E(x)|| ≤ ||
2

m! 4m2m(k−1)
max

x∈[0,1]
|ym(x)| || 

Where we have used the well-known maximum error bound for the interpolation. 

5. Numerical case studies 

Example 5.1 First, consider the initial value problem [12], 

y′′ − 2ey = 0, 0 < x < 1,                                                             (5.1) 

y(0) = 0, y′(0) = 0.                                                              (5.2) 

The exact solution is y(x)  = – 2ln(cos(x)).  

Here, solving it using Laguerre wavelet, with k =1, M= 5, 10. First we assume that the unknown 

function y(x) is given by,  

𝑦(𝑥) = 𝐶𝑇ψ(x).                                                                   (5.3) 

Collocating the above initial value problem with collocation point, we get, 

                      
𝑑2

𝑑𝑥2 𝐶𝑇ψ(xi) + β exp (𝐶𝑇ψ(xi)) = 0                                            (5.4) 

Using the initial conditions, we obtain,  

   𝐶𝑇ψ(0) = 0,       
𝑑

𝑑𝑥
[𝐶𝑇ψ(0)] =  0                                                (5.5) 

Equations (5.4) and (5.5) generate a system of nonlinear equations. These equations can be solved for 

unknown coefficients of the vector C. A comparison between the exact and the approximate solutions is 

demonstrated in Fig. 5.1. From this, it can be found that the obtained approximate solutions are very close to 

the exact solution. In addition, Tables 5.1, 5.2, and 5.3 shows that how approximate solutions obtained by this 

method is nearer to exact solution and comparison of present method with other methods. The results of the 

proposed method are more accurate. 

 

Table 5.1 Numerical results of the example 5.1. 

X Exact solution 
Laguerre wavelet solution 

k=1, M=5                           k=1, M=10 

0.1 0.010016711246471 0.010945019574018 0.010015723120887 

0.2 0.040269546104817 0.042843068920563 0.040268130498589 

0.3 0.091383311852116 0.095192376400338 0.091380154233775 

0.4 0.164458038150111 0.168696160272670 0.164454336540075 

0.5 0.261168480887445 0.265262628695516 0.261164512747200 

0.6 0.383930338838875 0.388004979725458 0.383924231282435 
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0.7 0.536171515135862 0.541241401317702 0.536163668075460 

0.8 0.722781493622688 0.730495071326083 0.722773470872198 

0.9 0.950884887171629 0.962494157503059 0.950873803594732 

1 1.231252940772028 1.245171817499718 1.231239850909333 

 

 

Table 5.2. Comparison of the absolute error of the example 5.1. 

x 
PIA(1,3) 

algorithm [2] 

Legendre    

wavelet [18] 

Present Method 

(M=10,k=1) 

0.1 6.71× 10−6
 9.00× 10−8

 9.88× 10−7
 

0.2 9.55× 10−6
 1.5× 10−7

 1.41× 10−6
 

0.3 3.11× 10−6
 6.14× 10−7

 3.15× 10−6
 

0.4 8.04× 10−6
 8.88× 10−6

 3.70× 10−6
 

0.5 8.48× 10−6
 5.67× 10−5

 3.96× 10−6
 

0.6 2.03× 10−5
 2.55× 10−4

 6.10× 10−6
 

0.7 7.15× 10−5
 9.24× 10−4

 7.84× 10−6
 

0.8 2.91× 10−4
 2.90× 10−3

 8.02× 10−6
 

0.9 1.05× 10−3
 7.90× 10−3

 1.10× 10−5
 

1 3.53× 10−3
 1.00× 10−3

 1.30× 10−5
 

 

Table 5.3 Maximum absolute error of the example 5.1 for different values of M. 

k M Maximum absolute error 

1 
5 1.39× 10−2

 

10 1.30× 10−5
 

 

 
Fig. 5.1 Comparison of exact and approximate solutions for Example 5.1 for different value of M. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

S
ol

ut
io

n

 

 

Exact solution

LWM solution at k=1, M=5	

LWM solution at k=1, M=10



Journal of Information and Computing Science, Vol. 13(2018) No. 2, pp 179-189 

 

 

JIC email for subscription: publishing@WAU.org.uk 

185 

 
Fig. 5.2 Graphical representation of absolute error of the example 5.1 and other methods with Exact solution. 

 

Example 5.2. Next, consider the another initial value problem, 

y′′ − ey = 0, 0 < x < 1                                                                      (5.6)       

y(0) = 0, y′(0) = 1.                                                                        (5.7) 

The exact solution is y(x)  = – ln(1 − sin(x)).   

Solving the above equation by using the Laguerre wavelet method with k = 1, M =5, 10. The numerical 

results obtained are presented in Table 5.4 & Table 5.5 and also in Figure 5.2,  which shows the comparison 

between the exact and approximate solutions for various values of M (with k = 1). Moreover, higher accuracy 

can be achieved by taking higher order approximations. 
 

Table 5.4 Numerical results of the example 5.2.  

X Exact solution 
Laguerre wavelet solution 

k=1, M=5                           k=1, M=10 

0.1 0.105175440170716 0.106162141310651 0.105174456039094 

0.2 0.221481596620136 0.224204367051520 0.221480195643380 

0.3 0.350295630327762 0.354307936760044 0.350292515140609 

0.4 0.493343238943652 0.497784185739087 0.493339627370005 

0.5 0.652822343722163 0.657074525056935 0.652818539922009 

0.6 0.831587685227202 0.835750441547304 0.831581852777163 

0.7 1.033436216165614 1.038513497809331 1.033428798997193 

0.8 1.263567445357214 1.271195332207581 1.263560062376200 

0.9 1.529365557326900 1.540757658872044 1.529355398932239 

1 1.841817641269531 1.855292267698133 1.841805866322829 

 

Table 5.5 Maximum absolute error of the example 5.2 for different values of M. 

k M Maximum absolute error 

1 
5 1.34× 10−2

 

10 1.17× 10−5
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Fig. 5.3 Comparison of exact and approximate solutions for Example 5.2 

 

Example 5.3. Now, consider the boundary value problem as first case for Bratu’s equation                       is 

as follows, when 𝛽 = 2 [9, 18], 

y′′ + 2ey = 0, 0 < x < 1                                                                    (5.8) 

                                    y(0) = 0, y(1) = 0.                                                                        (5.9) 

We solve the equation by using the Laguerre wavelets method with k = 1, M = 5, 10. The numerical 

results obtained are presented in Table 5.6. It shows the comparison between the exact and approximate 

solutions for various values of M (with k = 1). Table 5.7 & 5.8 shows Laguerre wavelet method is better than 

Laplace, Decomposition, and B-spline methods. 
Table 5.6 Numerical results of the example 5.3. 

x Exact solution 
Laguerre wavelet solution 

k=1, M=5.                          k=1, M=10 

0.1 0.1144107440 0.114477030814153 0.114410762963416 

0.2 0.2064191156 0.206747974250747 0.206419080092473 

0.3 0.2738793116 0.274387890707259 0.273879379325990 

0.4 0.3150893646 0.315664680467602 0.315089388134766 

0.5 0.3289524214 0.329539083702122 0.328952356854643 

0.6 0.3150893646 0.315664680467602 0.315089388134766 

0.7 0.2738793116 0.274387890707260 0.273879379325535 

0.8 0.2064191156 0.206747974250748 0.206419080092473 

0.9 0.1144107440 0.114477030814155 0.114410762962962 

 

Table 5.7 Comparison of numerical solutions with exact solution of the Example 5.3. 

x 
Exact 

solution 
Laplace[13] 

Decomposition 

[12] 
B-spline [9] 

Present 

Method[k=1,M=10] 

0.1 0.1144107440 0.1122817141 0.0991935000 0.1143935651 0.1144107629 

0.2 0.2064191156 0.2022094162 0.1917440000 0.2063865190 0.2064190800 

0.3 0.2738793116 0.2676925058 0.2679915000 0.2738344125 0.2738793793 

0.4 0.3150893646 0.3070874506 0.3183360000 0.3150365062 0.3150893881 

0.5 0.3289524214 0.3193532294 0.3359375000 0.3288968072 0.3289523568 
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0.6 0.3150893646 0.3041598403 0.3183360000 0.3150365062 0.3150893881 

0.7 0.2738793116 0.2619458909 0.2679915000 0.2738344125 0.2738793793 

0.8 0.2064191156 0.1940413072 0.1917440000 0.2063865190 0.2064190800 

0.9 0.1144107440 0.1035373785 0.0991935000 0.1143935651 0.1144107629 

 

Table 5.8 Maximum absolute error of the example 5.3 for different values of M. 

Laplace[13] 
Decomposition 

[12] 
B-spline [9] 

Present 

Method[k=1,M=5] 

Present 

Method[k=1,M=10] 

1.08 × 10−2
 1.52 × 10−1

 5.56 × 10−5
 5.90 × 10−4

 6.80 × 10−8
 

 

Example 5.4. Next consider the another boundary value Bratu-type problem [16], 

y′′ + π2e−y = 0, 0 < x < 1                                                              (5.10) 

                                    y(0) = 0, y(1) = 0.                                                                       (5.11) 

Given equation is different from the standard Bratu-type Problem by the term e−y and 𝛽 = π2 > β
c
the 

effect of these changes will be examined. Using Laguerre wavelets method, the exact solution can be obtained 

by considering the boundary condition    y(0) = 0, y(1) = 0 , and exact solution is    y(x)  =  𝑙𝑛 [1 +
 𝑠𝑖𝑛 ( 𝜋𝑥)]. Numerical findings are presented in Table 5.9, 5.10 and in Fig. 5.3.   

 
Fig. 5.4 Comparison of exact with different methods approximate solutions for Example 5.3. 

 

Table 5.9 Numerical results of the example 5.4.  

x Exact solution 
LWM solution Error with Exact solution 

k=1, M=5.                           k=1, M=10 

0.1 0.269276469559262 0.268594715178942 0.269277891551610 

0.2 0.462340122126475 0.463242870933833 0.462338071054546 

0.3 0.592783600716708 0.594638600969557 0.592786404384242 

0.4 0.668371029081564 0.670420572218170 0.668372071530030 

0.5 0.693147180559945 0.695171984838904 0.693144450611726 
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0.6 0.668371029081564 0.670420572218170 0.668372071537306 

0.7 0.592783600716708 0.594638600969557 0.592786404398794 

0.8 0.462340122126475 0.463242870933829 0.462338071069098 

0.9 0.269276469559262 0.268594715178935 0.269277891573438 

 

Table 5.9 Maximum absolute error of the example 5.4 for different values of M. 

k M Absolute error 

1 
5 2.04× 10−3

 

10 2.80× 10−6
 

 

 
 Fig. 5.5 Comparison of exact and approximate solutions for Example 5.4  

 

6. Conclusions 

Laguerre wavelet method has been successfully utilized to initial and boundary value Bratu-type problems. 

Convergence and an error estimate are also studied. Different types of Bratu-type problems can be solved 

numerically by the present method more accurately than the others. It can be concluded that the Laguerre 

wavelet method is a powerful and efficient technique in finding very good solutions for these kinds of Bratu’s 

problems. 
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